MAT319/320 Solutions to First Midterm

1. 10 points Give a careful and complete definition of what it means when we say "The limit of the sequence X is L."

Solution: The limit of the sequence $X=(x_n)$ is L if for any $\epsilon>0$, there is a natural number K_{ϵ} so that $|x_n-L|<\epsilon$ for all $n\geq K_{\epsilon}$.

- 2. 10 points Let A and B be bounded subsets of \mathbb{R} .
 - (a) Prove that $A \cup B$ is a bounded subset of \mathbb{R} .

Solution: Since A is bounded, there are real numbers u_A and l_A so that every element of A lies between u_A and l_A ; that is, $A \subseteq [l_A, u_A]$. Similarly, there are real numbers l_B and u_B so that $B \subseteq [l_B, u_B]$.

Let $L = \inf(l_A, l_B)$, and let $U = \sup(u_A, u_B)$. Then certainly $A \subseteq [L, U]$, and also $B \subseteq [L, U]$. If $x \in A \cup B$, then $x \in A$ or $x \in B$, and so $x \in [L, U]$. Thus $A \cup B \subseteq [L, U]$, which means $A \cup B$ is bounded.

(b) Prove that $\sup(A \cup B) = \sup(\sup A, \sup B)$.

Solution: Let $U = \sup(\sup A, \sup B)$. We must show that for any $x \in A \cup B$, we have $x \leq U$, and we must also show that if V < U, then there is a $y \in A \cup B$ so that y > V.

The first part is nearly immediate: since $U \ge \sup A$, for every $a \in A$ we have $a \le U$. Similarly, since $U \ge \sup B$, we have $b \le U$ for every $b \in B$.

For the second part, note that either $U = \sup A$ or $U = \sup B$. Without loss of generality, suppose the former holds. Then since U is the supremum of A, if V < U, there is an $a \in A$ so that a > V. Since this same a is an element of $A \cup B$, we have the desired conclusion.

3. (a) 10 points Prove that for all natural numbers n, we have $2^n \ge n + 1$. You might find induction helpful.

Solution: First, we see that for n = 1, we have $2 = 2^1 \ge 1 + 1$, so the base case holds.

Now for the inductive step, we want to show that $2^k \ge k+1$ implies that $2^{k+1} \ge k+2$. We have

$$2^{k+1} = 2 \cdot 2^k \ge 2(k+1)$$
 by our inductive hypothesis $= 2k+2 > k+2,$

where we have used k > 0 in the final step.

This shows that $2^n \ge n+1$ for all natural numbers n.

(b) Prove that for all natural numbers $n \ge 4$, we have $2^n \ge n^2$. Feel free to use the result from part a, even if you couldn't do it.

Solution: First, we establish the relation for n=4, our base case. We have $2^4=16=4^2$, as desired.

Now we show that if $2^k \ge k^2$, then we also have $2^{k+1} \ge (k+1)^2$.

Unfortunately, it seems we need to establish that $2^k \ge 2k+1$ first, so let's do that, again by induction. First, we see that $2^4 = 16 > 9 = 2 \cdot 4 + 1$. For the inductive step, we must establish that $2^{k+1} \ge 2(k+1) + 1$. So

$$2^{k+1} = 2 \cdot 2^k \ge 2 \cdot (2k+1)$$
 using the induction hypothesis $=4k+2=2k+2k+2$.

Since k > 1, we have 2k > 2 and so we have

$$2k + 2k + 2 > 2k + 4 > 2(k + 1) + 1$$
.

This is our desired result.

Now we return to our main proof:

$$2^{k+1} = 2^k + 2^k \ge k^2 + (2k+1) = (k+1)^2.$$

Here we used the induction hypothesis $(2^k \ge k^2)$ and our previous fact $(2^k \ge 2k + 1)$.

I'm sorry that a typo in part a caused it not to be useful (although still true).

4. 10 points Consider the sequence whose n^{th} term $a_n = \left(\frac{-1}{2}\right)^n$. Prove, using the definition of the limit, that the limit of this sequence is 0.

Solution: Given $\epsilon > 0$, we need to find a K so that $|a_n| < \epsilon$ for all $n \ge K$.

Note that from the previous problem, we know that $2^n \ge n+1 > n$, and so if we take $K \ge 1/\epsilon$, for any n > K we will have

$$\left| \left(\frac{-1}{2} \right)^n \right| = \frac{1}{2^n} \le \frac{1}{n} \le \frac{1}{1/\epsilon} = \epsilon,$$

as desired.

- 5. 10 points Let $f:(0,1) \to \mathbb{R}$ have the property that f(x) < x for all $x \in (0,1)$.
 - (a) Prove that $\sup_{x \in (0,1)} f(x) \le 1$

Solution: Suppose not. If the supremum is greater than 1, there must be some some $x \in (0,1)$ with 1 < f(x). But f(x) < x < 1, and so this is a contradiction.

(b) Is it true that $\sup_{x \in (0,1)} f(x) < 1$? Prove or give a counterexample.

Solution: This is not true.

There are plenty of counterexamples, such as $f(x) = x^2$ or f(x) = 2x - 1. Let's use the second one. For f(x) = 2x - 1, we certainly have f(x) < x for all x < 1. But the image of the interval (0,1) under f is (-1,1), and so $\sup f(x) = 1$.