
MAT319/320 Solutions to First Midterm
1. 10 points Give a careful and complete definition of what it means when we say “The

limit of the sequence X is L.”

Solution: The limit of the sequence X = (xn) is L if for any ε > 0, there is a natural
number Kε so that |xn − L| < ε for all n ≥ Kε.

2. 10 points Let A and B be bounded subsets of R.

(a) Prove that A ∪B is a bounded subset of R.

Solution: Since A is bounded, there are real numbers uA and lA so that every
element of A lies between uA and lA; that is, A ⊆ [lA, uA]. Similarly, there are real
numbers lB and uB so that B ⊆ [lB, uB].
Let L = inf(lA, lB), and let U = sup(uA, uB). Then certainly A ⊆ [L,U ], and
also B ⊆ [L,U ]. If x ∈ A ∪ B, then x ∈ A or x ∈ B, and so x ∈ [L,U ]. Thus
A ∪B ⊆ [L,U ], which means A ∪B is bounded.

(b) Prove that sup(A ∪B) = sup(supA, supB).

Solution: Let U = sup(supA, supB). We must show that for any x ∈ A ∪B, we
have x ≤ U , and we must also show that if V < U , then there is a y ∈ A ∪ B so
that y > V .
The first part is nearly immediate: since U ≥ supA, for every a ∈ A we have
a ≤ U . Similarly, since U ≥ supB, we have b ≤ U for every b ∈ B.
For the second part, note that either U = supA or U = supB. Without loss of
generality, suppose the former holds. Then since U is the supremum of A, if
V < U , there is an a ∈ A so that a > V . Since this same a is an element of A∪B,
we have the desired conclusion.

3. (a) 10 points Prove that for all natural numbers n, we have 2n ≥ n+ 1.
You might find induction helpful.

Solution: First, we see that for n = 1, we have 2 = 21 ≥ 1 + 1, so the base case
holds.
Now for the inductive step, we want to show that 2k ≥ k+1 implies that 2k+1 ≥
k + 2. We have

2k+1 = 2 · 2k ≥ 2(k + 1) by our inductive hypothesis
= 2k + 2 > k + 2,
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where we have used k > 0 in the final step.
This shows that 2n ≥ n+ 1 for all natural numbers n.

(b) Prove that for all natural numbers n ≥ 4, we have 2n ≥ n2.
Feel free to use the result from part a, even if you couldn’t do it.

Solution: First, we establish the relation for n = 4, our base case. We have
24 = 16 = 42, as desired.
Now we show that if 2k ≥ k2, then we also have 2k+1 ≥ (k + 1)2.
Unfortunately, it seems we need to establish that 2k ≥ 2k + 1 first, so let’s do
that, again by induction. First, we see that 24 = 16 > 9 = 2 · 4 + 1. For the
inductive step, we must establish that 2k+1 ≥ 2(k + 1) + 1. So

2k+1 = 2 · 2k ≥2 · (2k + 1) using the induction hypothesis
=4k + 2 = 2k + 2k + 2.

Since k > 1, we have 2k > 2 and so we have

2k + 2k + 2 > 2k + 4 > 2(k + 1) + 1.

This is our desired result.
Now we return to our main proof:

2k+1 = 2k + 2k ≥ k2 + (2k + 1) = (k + 1)2.

Here we used the induction hypothesis (2k ≥ k2) and our previous fact (2k ≥
2k + 1).
I’m sorry that a typo in part a caused it not to be useful (although still true).

4. 10 points Consider the sequence whose nth term an =

(
−1

2

)n

. Prove, using the

definition of the limit, that the limit of this sequence is 0.

Solution: Given ε > 0, we need to find a K so that |an| < ε for all n ≥ K.

Note that from the previous problem, we know that 2n ≥ n + 1 > n, and so if we
take K ≥ 1/ε, for any n > K we will have∣∣∣∣(−1

2

)n∣∣∣∣ =
1

2n
≤ 1

n
≤ 1

1/ε
= ε,

as desired.
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5. 10 points Let f : (0, 1)→ R have the property that f(x) < x for all x ∈ (0, 1).

(a) Prove that sup
x∈(0,1)

f(x) ≤ 1

Solution: Suppose not. If the supremum is greater than 1, there must be some
some x ∈ (0, 1) with 1 < f(x). But f(x) < x < 1, and so this is a contradiction.

(b) Is it true that sup
x∈(0,1)

f(x) < 1? Prove or give a counterexample.

Solution: This is not true.
There are plenty of counterexamples, such as f(x) = x2 or f(x) = 2x− 1.
Let’s use the second one. For f(x) = 2x − 1, we certainly have f(x) < x for all
x < 1. But the image of the interval (0, 1) under f is (−1, 1), and so sup f(x) = 1.
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