
Homework assignment 6pp. 95
Exercise 1. Let T be the linear operator on C2 defined by T (x1, x2) = (x1, 0).

Let B be the standard ordered basis for C2 and let B′ = {α1, α2} be the ordered
basis defined by α1 = (1, i), α2 = (−i, 2).

a What is the matrix of T relative to the pair B,B′?
b What is the matrix of T relative to the pair B′,B?

c What is the matrix of T in the ordered basis B′?
d What is the matrix of T in the ordered basis {α2, α1}?

Solution:
a

M =

(
2 0
−i 0

)

b

M =

(
1 −i
0 0

)

c

M =

(
2 −2i
−i −1

)

d (−1 −i
−2i 2

)

Exercise 4. Let V be a two-dimensional vector space over the field F , and let
B be an ordered basis for V . If T is a linear operator on V and

[T ]B = M =

(
a b
c d

)

prove that T 2 − (a + d)T + (ad− bc)I = 0.

Solution: Notice that the zero operator and the identity operator have the
same matrix with respect to any basis, namely, the zero matrix and the identity
matrix. Therefore we only need to check the equality with respect to the basis B.

M2 =

(
a2 + bc ab + bd
ca + dc bc + d2

)
, (a+d)M =

(
a2 + da ba + bd
ac + cd ad + d2

)
, (ad−bc)I =

(
ad− bc 0

0 ad− bc

)
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Therefore M2 − (a + d)M + (ad− bc)I = 0.Exercise 8 Let θ be a real number. Prove that the following two matrices are
similar over the field of complex numbers:

(
cos(t) − sin(t)
sin(t)t cos(t)

)
,

(
eit 0
0 e−it

)
.

(Hint: Let T be the linear operator on C2 that is represented by the first matrix
in the standard ordered basis. Find vectors α1 and α2 such that Tα1 = eitα1,
Tα2 = e−itα2, and {α1, α2} is a basis.)

Solution: If there exists a basis α1, α2 such that Tα1 = eitα1, Tα2 = e−itα2,
then T is represented in this basis by the second matrix. It means that the
second matrix is similar to the first. So it remains to find α1, α2. Let α1 = (x1, x2).
Then Tα1 = (cos(t)x1 − sin(t)x2, sin(t)x1 + cos(t)x2). Hence we arrive to the system of
equations

cos(t)x1 − sin(t)x2 = eitx1

sin(t)x1 + cos(t)x2 = eitx2,

or equivalently
(cos(t)− eit)x1 − sin(t)x2 = 0

sin(t)x1 + (cos(t)− eit)x2 = 0.

Since eit = cos(t) + i sin(t), we get

−i sin(t)x1 − sin(t)x2 = 0

sin(t)x1 − i sin(t)x2 = 0.

So we can divide by sin(t) and find that x1 = ix2, i.e. we can take α1 = (i, 1).
Similar calculations allow to find α2.

Exercise 9. Let V be a finite dimensional vector space over the field F and
let S and T be linear operators on V . We ask: When do there exist ordered bases
B and B′ for V such that [S]B = [T ]B′ ? Prove that such bases exist if and only if
there is an invertible linear operator U on V such that T = USU−1.
Solution: Suppose that [S]B = [T ]B′, where B = {α1, . . . , αn} and B′ = {β1, . . . , βn}.
Let U be the operator which carries B onto B′ . Let v be any vector of V . Then
v = a1α1+. . .+anαn for some unique scalars a1, . . . , an. Let w = U(v) = a1β1+. . .+anβn

Since [S]B = [T ]B′ we know that S(v) = c1α1 + . . . + cnαn and T (w) = c1β1 + . . . + cnβn

Therefore

U−1TU(v) = UT (w) = U(c1β1 + . . . + γnβn) = c1α1 + . . . + cnαn = S(v)

Now suppose that there exists an invertible operator U such that T = USU−1.
Let B = {α1, . . . , αn} be any basis for V and let B′ = {U(α1), . . . , U(αn)}. Then, if
v = a1α1, . . . , anαn is any vector in V ,

T (v) = T (a1α1, . . . , anαn) = c1α1 + . . . + cnαn = USU−1(v)
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but U−1(v) = a1β1 + . . .+anβn. Hence, the matrix representing S in the basis B has
the same entries as the matrix representing T in the basis B′.Bonus exercise 12. Let V be an n-dimensional space over the field F ,
and B = {α1, . . . , αn} an ordered basis for V .

(a) There is a unique linear operator T on V such that

Tαi = αi+1, j = 1, . . . , n− 1, Tαn = 0.

What is the matrix A of T in the ordered basis B?
(b) Prove that T n = 0 but T n−1 6= 0.
(c) Let S be any linear operator on V such that Sn = 0 but Sn−1 6= 0. Prove that

there is an ordered basis B′ for V such that the matrix of S in the ordered basis
B′ is the matrix A of part (a).

(d) Prove that if M and N are n×n matrices over F such that Mn = Nn = 0 but
Mn−1 6= 0 6= Nn−1, then M and N are similar.
Solution: (a)

A =




0 0 . . . 0 0 0
1 0 . . . 0 0 0
0 1 . . . 0 0 0
... . . . . . . ...
0 0 . . . 1 0 0
0 0 . . . 0 1 0




(b) The operator T n−1 maps α1 to αn. Indeed, T n−1α1 = T n−2(Tα1) = T n−2α2 =
. . . = αn. Hence, T n−1 6= 0. But the same arguments show that T n maps any basis
vector αi to 0, hence T n = 0.

(c) Let α ∈ V be a vector such that T n−1α 6= 0. Then vectors β1 = α, β2 = Tα,...,
βn = T n−1α form a basis in V . These vectors are linearly independent because
if a1β1 + . . . + anβn = 0, then applying T n−1 we get rid of all terms except for
a1(T

n−1α) = 0. Hence, a1 = 0. Applying T n−2 we get that a2(T
n−1α) = 0, hence a2 = 0

and so on. Then B′ = {β1, . . . , βn} is the desired basis.
(d) Consider an operator whose matrix in some basis is M . Then by (c) there

exists a basis such that this operator has matrix A from (a) in this basis. Hence,
M is similar to A. The same is true for N . And two matrices that are similar to
the same matrix are similar to each other.
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