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€ XeRcise 2- Let
1 -1 1 2 =2
A=12 o 1|, B=[1 3
3 0 1 4 4
Verify directly that A(AB) = A’B
solaTtion:
2 -1 1 7T =3
A= |5 -2 3|, A*B=120 —4
6 -3 4 25 =5
5 —1 7 =3
AB=|(8 0|, AAB)=|[20 —4
10 -2 25 —5

€ XxepRcise 3 Find two different 2 x 2 matrices A such that A% =0 but A # 0.
solation: Let
a b
()

22 a’+bc (a+d)b
(a+d)c d*+bc)’
Now find «,b,¢,d such that «* 4+ bc = (a + d)b = (a + d)c = d* + bc = 0. Note that if
a+d=0and ad — bc = 0, then all these equations are satisfied. For instance, put
a=—-d=1,b=—-c=1lorputa=d=0,b=0,c=1. Then the matrices

(B 5) 6ol

are not 0 but their squares are 0.
€Xepcise 4- For the matrix A of Exercise 2, find elementary matrices
Ei, FEs, ..., E; such that

be a 2 x 2 matrix. Then

Ey---Fy -Ey-A=1



solar 10N: Let us first row-reduce A into the identity matrix:

1 -1 1 1 -1 1\ .,
A —2.1+11 O 2 _1 —3-I+I1I1 0 2 _1 2

3 0 1 0 3 —2

1 -1 1 1 -1 1 1 -1 1\,
. _9. EIENN

0 1 _% 3 IT+I11 0 1 _% 2. 0111 0 1 _% 5 +
0 3 -— 0 0 -1 0 0 1
1 -1 1 1 -1 0 100
0 1 o= g 1 ol 2L (o 1 0
0 0 1 0 0 1 00 1

Applying the transformation on top of each arrow to the identity matrix, we
obtain the elementary transformations we want. For example, F; is obtained by
applying —2 - I + I to the identity matrix, therefore:

1
El - —2
0

o = O
_ o O

Analogously we obtain all the other matrices, the last one is

1 10
Es=10 10
0 0 1
€Xepcise 7- Let A and B be 2 x 2 matrices such that AB = I. Prove that
BA=1].
SoLanoN:

First proof: Let

A:(a b)7 B:(xl xg)‘
c d T3 T4

Consider z; as unknowns, and a,b,c,d as coefficients. Since AB = I, the un-
knowns z,, z3 satisfy the following 2 linear equations

ary -“+brs =1
CIq +dZL’3 :O,

while the unknowns z,, z, satify the equations

ars +bry =0
crs +dry =1.
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Solving these two systems one gets that z; = —%— z, = —b 23 = =% 1, = —¢.

So the elements of the matrix B are uniquely defined by the elements of A. Now

computing
d —b a b
BA = (ad_—cbc adgbc) ( ) ’
ad—bc  ad—bc ¢ d
we get that it is also equal to /.
Second proof: Reduce B to the row reduced echelon matrix B’ by elementary

row operations so that B = F, ... E, B’ for some elementary matrices F,..., E,.
Then the equality AB = I implies that B’ is invertible from the left. Indeed,

(AE,...E,)B =1,

so the matrix AF; ... FE, is the left inverse of B’. Let us prove that a 2 x 2 row
reduced echelon matrix that has a left inverse can not have zero rows. Otherwise,

if
(Y
7o )

has the bottom row zero, then for any matrix
,_[(a b
=3

A/B/ — axr ay
cr ¢y

will have two proportional rows, so A'B’ can not be equal to the identity matrix.
Since B’ does not have zero rows, it equals to the identity matrix. Hence, B is the
product of elementary matrices so it also has a right inverse C = E;'E. !, ... B!
such that BC' = I. Now show that A = C. Indeed,

the product

A=Al = A(BC) = (AB)C = IC = C.

Hence, BA=BC-=I.

P]‘) 26-27

€Xepcise 2- Let

2 0 1
A=1|1 -3 —i
o 1 1

Find a row-reduced echelon matrix R which is row-equivalent to A and an in-
vertible 3 x 3 matrix P such that R = PA.

solar 10N: A is invertible, therefore we can take R to be the identity matrix and

P=A"%
1 i _ ;1 L _ 3,
1 3 303 110 110 130'
S WP 4
-3t 5Tt 5t



€ XeRcise 8 Let

A:(g g)_

Prove, using elementary row operations, that A is invertible if and only if (ad —

be) # 0.

solar 10N: Start row reducing A. First, note that if A is invertible or ad —bc #
0, then either a or c is not zero. Otherwise, A would have a zero column, and for
any 2 x 2 matrix B the product BA would also have a zero column so that BA # I.
By interchanging rows we can assume that a # 0. Multiply the first row by ¢ and
subtract it from the second one:
a b
(b ats)

This matrix is invertible if and only if the second row is not zero, which means
d — % = 0. The latter is true if and only if ad — bc # 0.

€XeRcise 9- An n x n matrix is called upper-triangular if A;; = 0 for i > j,
that is, if every row below the main diagonal is 0. Prove that an upper-triangular
matrix is invertible if and only if every entry on its main diagonal is different from
0.

SOL(]T 10N: Let A be an upper triangular matrix. First, look at the bottom
row of A. Its only (possibly) non-zero entry is the last one: A,,. So if A is
invertible, then A4,, # 0. Otherwise, A would have a zero row. By subtracting the
multiples of the bottom row from the other rows we can eliminate all non-zero
entries in the n-th column except for A,,. Doing this will not change the other
columns.

Now look at the (n — 1)st row (it now also has only one possibly non-zero entry
Am-1)(n—1)) and repeat the same procedure. We get that A,_1),—1) # 0. Repeating
this n times we prove that A;,..., A,, # 0 and that A is equivalent to the diago-
nal matrix with entries Ay, ..., A,, on the diagonal. The latter matrix is clearly
invertible.

€Xxepcise L0- Prove the following generalization of Exercise 6. If A is an
m X n matrix, B is an n x m matrix and m < n, then AB is not invertible.

solation Let



And let

ar1 ... Qim 0O ... 0
A= : 0 ... 0
pi - Qpm 0 ... 0

where the last n — m entries are zero in each row. Notice that A is not invertible,

n0's
—— A ~
since any vector of the form X = (0,...,0,%,...,z,_,) is a solution of AX = 0.

Also, let I be the m x n matrix which has the first n rows equal to the n x n
identity matrix, and all other entries equal to zero, i.e.

j _ ( Inxn )
O(m—n)xn

Notice that A = A]. Now suppose that AB is invertible, then there exists a matrix
P such that (AB)P = I but then A(/BP) = I which implies that A is invertible!
(contradiction). Therefore AB is not invertible.

pp: 33-34

€ XeRcise 4- Let V be the set of all pairs (z,y) of real numbers, and let I be
the field of real numbers. Define

(z,y)+ (@1, ) = (x + 21,y + 1)

¢ (z,y) = (cx,y)
Is V with these operations, a vector space over the field of real numbers?

SOL(lT 10N: No. In a vector space we must have a unique vector 0 and the
following equation must hold for any vector:

0-a=0
Notice that with the operations defined above we have

and
0-(0,3)=1(0,3)

but this two products should be equal to the unique zero vector. Since 1 # 3 we
are done.
€ Xepcise 5 On R", define two operations

adf=a—7
c-a=—c -«

Which of the axioms for a vector space are satisfied by (R",®,-) ?
SOLGT 10N: Addition is not commutative, addition is not associative, there is a
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unique vector 0 (namely, the usual 0 vector), there is a unique inverse for every
a (namely «a itself), 1-a # a, ¢ - (¢ @) = ¢1 - (—cea) = —c1(—car) = c1c0a0 # —c1C000 =
(cic2) v, c-(a®f) = cca®e-f = c(f—a), (c1+c2)-a = —(c14c2)-a # (ca—c1)-a = c1-aDcy-o.

€Xepcise 6- Let V be the set of all complex-valued functions f on the real
line such that (for all ¢ in R) L

f(=t) = f(t). (1)

The bar denotes complex conjugation, i.e. a + bi = a — bi. Show that V is a vector
space over the field of real numbers. Give an example of a function in V that is
not real-valued.

solar 10N: First, check that if functions f, g satisfy equation (1), then f + ¢
and \f for a real \ also satisfy it. This is because complex conjugation commutes
with opeartions of addition and multiplication by real numbers.

(f+9)(=t) = F(=t) + g(=t) = [() + g(t) = [(t) + 9(t) = (f + 9)(1),
(AN)(=t) = Af(=t) = A () = Af(2).
Hence, a subset V' of the real vector space of all functions from R to C is closed
under addition and multiplication by real numbers. This means that V is a
subspace and satisfies all properties of a vector space.
An example of a non-real-valued function in V' is f(t) = it.




