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SECTION 73 PP 249-250
(S Xepcise |- Let N, and N, be 3 x 3 nilpotent matrices over the field F'. Prove
that N; and N, are similar if and only if they have the same minimal polynomial.

solat 10N: If N; and N, are similar, they have the same minimal polynomial
(cf. pg. 192). Conversely, suppose that N; and N, have the same minimal
polynomial. The minimal polynomial must be z* for some 1 < k < 3. If k = 1 we
get that the matrix is the zero matrix, so both N; and N, are the zero matrix. If
k =2 we get that the Jordan form for N; and N; is

o = O
o O O
o O O

and thus, they are similar. If £ = 3 then the Jordan form of both matrices is
000
100
010
and thus, they are similar.
€Xxepcise 3 If Ais a complex 5 x 5 matrix with characteristic polynomial

f=(z—2)>3%x+7)?

and minimal polynomial p = (x — 2)?(z + 7), what is the Jordan form for A?

SOL(lT 10N: The block matrix associated to the characteristic value 2 is a
3 x 3 matrix with 2’s along the diagonal with an elementary Jordan matrix of
size 2 x 2 (the multiplicity of 2 in the minimal polynomial) as the first block. i.e.:

2 00
1 20
00 2

Analogously, the block matrix associated to the characteristic value —7is a 2 x 2
matrix with —7’s along the diagonal with an elementary Jordan matrix of size
1 x 1 as the first block, i.e.:
-7 0
(%)

Hence the Jordan form for A is:

200 0 O
120 0 O
002 0 0
000 =70
000 0 =7



€ XeRcise 4- How many possible Jordan forms are there for a 6 x 6 complex
matrix with characteristic polynomial (x + 2)*(z — 1)? ?

SOLG‘[ 10N: ATTENTION!!! There are 8 possibilities for the minimal polynomial,
this implies that there are at least 8 different Jordan forms. But the minimal
polynomial (z + 2)?(z — 1) may correspond to TWO different matrices, namely

-2 0 0 0 00 -2 0 0 0 00
1 =2 0 0 00 1 =2 0 0 00
0 0 -2 0 00 and o 0 -2 0 00
0o 0 1 =200 o 0 0 -2 200
0o 0 0 0 10 o 0 0 0 10
0 0 0 0 01 o 0 0 0 01

this corresponds to the fact that 4 =2 + 2 but also 4 = 2+ 1 + 1. Analogously the
minimal polynomial (z + 2)?(z — 1)? corresponds to TWO matrices. Therefore we
have 10 different Jordan forms. Think of it in this way:

How many blocks corresponding to the eigenvalue —2 can we form?

This is equivalent to “In how many ways can we write 4 as a sum a; + as + ... + a;
with ¢; >0 and a; > ay, > ... > a; ?” The answer is

= 4

= 3+1
= 2+2
= 241+1
= 1+1+1+1

NN SO SON

i.e. in 5 different ways. Analogously, we can write 2 in only two different ways,
namely 2 = 2 and 2 = 1 + 1. Therefore, multiplying we get 10 different Jordan
forms.

€ XepRcise 5 The differentiation operator on the space of polynomials of degree
less than or equal to 3 is represented in the natural’ ordered basis by the matrix

0 0

1
0
0

o O O
o w o o

2
0
0 0

What is the Jordan form of this matrix? (F' a subfield of the complex numbers.)?

SOLGT 10N The characteristic polynomial for this matrix is z? and the minimal
polynomial is z*, therefore the Jordan Form consists of only one block associated
to the characteristic value 0 with its first elementary Jordan block of length 4.
i.e. the Jordan form of the matrix is

0000
1000
0100
0010



SECTION 81 pp- 275-276

€XeRcise 2- Let V be a vector space over I'. Show that the sum of two inner
products on V is an inner product on V. Is the difference of two inner products
an inner product? Show that a positive multiple of an inner product is an inner
product.

SOLGT 10N: Let f; and f, be two inner products, we will show that f = f; + f5
satisfies all the axioms of an inner product.

(@) f(a+b,c)= fila+b,c)+ fala+b,c) = fi(a,c) + f1(b,c) + fala,c) + f2(b, ¢) the first
equality is by definition, the second is because f; and f, are inner products.
But reordering, the last term of the equality is equal to fi(a,c) + fa(a,c) +
fi(b,¢) + fa(b,c) = f(a,c) + f(b,c), the last equality is again by definition.

() flka,b) = fi(ka,b) + fa(ka,b) = kfi(a,b) + kfa(a,b) = k(fi(a,b) + fa(a,b) = kf(a,b)
(C) f(b7 CL) = fl(b7 (l) + f2(b7 a) = fl(a7b) + f2<a7b) = fl(a7b> + f2(a7b> = f(a’7b>
(d) If a #0, fi(a,a) >0 and fy(a,a) > 0 therefore f(a,a) = fi(a,a) + fa(a,a) >0

The difference of inner products is NOT an inner product in general: Let f; = f5
and f = f1 — f,, and let a # 0, then fa,a) = fi(a,a) — f2(a,a) = 0 (which contradicts
axiom d). The proof for the positive multiple of a scalar product is analogous to
the prove for the sum.

€ X€eRcise 3- Describe all inner products on R' and on C'

solar 10N: Let f be an inner product on R!, since f is linear on each variable
we get:

flrys)=f(r-1,s-1)=rf(l,s-1) =rsf(1,1)

therefore the inner product of the vectors r and s is just the product of the real
numbers r and s times f(1,1). But we know that f(1,1) > 0. So we have as many
inner products on R' as positive real numbers.

Let f be an inner product on C!, since f is linear on each variable we get:

flr,s)=f(r-1,s-1)=rf(l,s-1)=rsf(1,1)

therefore the inner product of the vectors r and s is just the product of the real
numbers r and s times f(1,1). But we know that f(1,1) > 0. So we have as many
inner products on C' as positive real numbers.

€ X€eRClIs€ 5 Let (|) be the standard inner product on R

(@) Let « = (1,2), 8 = (—1,1). If v is a vector such that (a|y) = —1 and (g|y) = 3
find ~.

(b) Show that for any « in R? we have a = (ale;)e; + (afez)es

solation:



(@) We have to solve the system of equations

ZE1+2ZE2:—1
—Z1+x2=3

Solving we get v = (—1, 2)
(b) Writing « in terms of the standard basis we get a = aje; + azes. On the right

hand of the equation we get

(a1e1 + azesler)er + (arer + agesles)ey =
(areq]er)er + (azesler) + (arer]es)es + (azesles) =
aie1 + ag€s

SECTION 82 PP 288-289
€ XeRc1se€ |- Consider R* with the standard inner product. Let W be the sub-
space of R* consisting of all vectors which are orthogonal to both a = (1,0, —1,1)
and = (2,3,—1,2)
solar 10N: We have to find the solution space for the system
T — X3+ Ta =0
21‘1+3$2—1’3+$2 = 0
1

Row reducing we get that the vectors (1, —3,1,0) and (—1,0,0,1) form a basis for
the solution space of the system.

€Xxepcise 2- Apply the Gram-Schmidt process to the vectors g, = (1,0,1),
B2 = (1,0,-1), B3 = (0,3,4), to obtain an orthonormal basis for R? with the stan-
dard inner product.

solar 10N: Notice that the first two vectors are already orthogonal, therefore
we only need to find the third vector. The basis we get is:

(1,0,1),(1,0,—1), (0, 3,0)

€ Xepcise 9- Let V be the subspace of R[z| of polynomials of degree at most 3.
Equip V with the inner product

(flg) = / F(Hg(t)dt

(@) Find the orthogonal complement of the subspace of scalar polynomials.
(b) Apply the Gram-Schmidt process to the basis {1, z,2? z*}

solation:
(b) The basis we getis {1,z — 3,1 —z + 2% —5 + 32 — 322 4 2%}

6 5

4



(@) Using (b), we obtain the following basis for the orthogonal complement of
the subspace of scalar polynomials, i.e. the orthogonal complement of the

subspace spanned by {1}: B={z — 3, —z+ 2% —5 + 2z — 32% + 25}

Remark: When performing the Gram-Schmidt process it is helpful to have
quick access to the inner products of the vectors of the basis. This can be
achieved by writing the matrix M = (m;;) where m;; = (e;le;). In this way, if
we write any two vectors « and ( in terms of the basis {¢;} we get the following:
(a|B) = [a]M[B]T. In the previous example we get the matrix

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

M =

so, for example, the inner product of a = 2 + 3z + 2% and 3 = 8z% — z? is equal to
2,3,1,0]M10,0,8, —1].

With this notation, if A = {1 = b,z = by, 2? = b3, 23 = b} the Gram-Schmidt
process becomes:

a; = b1
baMaT
as by — sqrar
a — ba— bgMa? . bgMaga
3 = 3 alMa;: 1 agMag: 2
basMa byMa baMal
as = b4 _ Y 1 4 2 4 3

a1Ma?a1 - agMa%ﬂa2 - CL;>,M(1§a3



