
Homework assignment 10
Section 6.3 pp. 197-198

Exercise 1. Let V be a finite dimensional vector space. What is the minimal
polynomial for the identity operator on V ? What is the minimal polynomial for
the zero operator?
Solution: The minimal polynomial for the identity operator is p(x) = x − 1.
It is monic, of degree 1 and it annihilates the identity operator. The minimal
polynomial for the zero operator is p(x) = x.
Exercise 3. Let A be the 4× 4 real matrix

A =


1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0


Show that the characteristic polynomial for A is x2(x − 1)2 and that it is also the
minimal polynomial.
Solution: Calculating det(xI − A) we get x2(x − 1)2. The minimal polynomial
should have the same degree 1 factors, i.e. x and (x− 1). Calculating the remain-
ing possibilities we get: A(A − I) 6= 0, A2(A − I) 6= 0, A(A − 1)2 6= 0. Therefore the
minimal polynomial is the characteristic polynomial.
Exercise 4. Is the matrix A of Exercise 3 similar over the field of complex
numbers to a diagonal matrix?

Solution: One can easily check that the matrices A and A− I have rank 3.
Hence, A has exactly two eigenvectors: one with eigenvalue 0, and the other with
eigenvalue 1. So A does not have a basis of eigenvectors, and thus is not similar
to a diagonal matrix over the complex field.

Exercise 5. Let V be an n-dimensional vector space and let T be a linear
operator on V . Suppose that there exists some positive integer k so that T k = 0.
Prove that T n = 0.
Solution: If T k = 0 then the minimal polynomial divides xk, therefore the
minimal polynomial must be xs for some s between 1 and n (because the minimal
polynomial has degree at most n), but then T s = 0. Therefore we are reduced to
the case when T k = 0 with k ≤ n. In that case T n = T n−kT k = T n−k · 0 = 0.
Exercise 6. Find a 3× 3 matrix for which the minimal polynomial is x2.

Solution: Let

A =

0 0 0
0 0 0
1 0 0


Clearly A2 = 0 but A 6= 0. Therefore the minimal polynomial is a monic polyno-
mial which divides x2 and is not x. i.e. it is x2.
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Section 6.4 pp. 205-206
Exercise 3. Let c be a characteristic value of T and let W be the space of
characteristic vectors associated with the characteristic value c. What is the re-
striction operator TW ?
Solution: Let w be any vector in W . Then w must satisfy T (w) = cw. But
TW (w) = T (w). Therefore TW (w) = cw, that is, T = cI.

Exercise 4. Let

A =

0 1 0
2 −2 2
2 −3 2

 .

Is A similar to a triangular real matrix? If so, find such a triangular matrix.

Solution: Compute the characteristic polynomial of A. It is x3. Therefore A
is similar to a triangular matrix (the minimal polynomial divides x3 and thus it is
a product of linear factors). Find one eigenvector v1 with eigenvalue 0 (solve the
system AX = 0 we get v1 = (−1, 0, 1)) . Now find a vector v2 such that Av2 = v1 (solve
the system AX = v1, we get (−1,−1, 0)). Then find a vector v3 such that Av3 = v2

(solve the system AX = v2, we get v3 = (−3
2
,−1, 0)). In the basis B = {v1, v2, v3} the

operator whose matrix in the standard basis is A, will have an upper triangular
matrix with zeroes on the diagonal, namely

[A]B =

0 1 0
0 0 1
0 0 0


Exercise 7. Let T be a linear operator on a finite-dimensional vector space
over the field of complex numbers. Prove that T is diagonalizable if and only if T
is annihilated by some polynomial over C which has distinct roots.

Solution: Suppose that T is diagonalizable, then by theorem 6 its mini-
mal polynomial p(x) factors as a product of polynomials of degree 1 with distinct
roots, hence we are done.
Suppose now that T is annihilated by some polynomial q(x) over C which has
distinct roots, i.e. q(x) = (x − c1) · · · (x − ck) with i 6= j ⇒ ci 6= cj . Let p(x) be the
minimal polynomial of T . We know that p(x) | q(x), i.e q(x) = p(x)r(x) . Since any
polynomial over C factors as a product of linear factors, we only need to check
that p(x) has no multiple roots, to conclude that T is diagonalizable (again by
theorem 6). Suppose that p(x) has a multiple root a , i.e. (x − a)2 | p(x), then we
must have (x − a)2 | q(x) (which contradicts our assumption on q(x)). Therefore
p(x) has no multiple roots and we are done.

Exercise 9. Let T be the indefinite integral operator
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(Tf)(x) =

∫ x

0

f(t)dt

on the space of continuous functions on the interval [0, 1]. Is the space of poly-
nomial functions invariant under T? The space of differentiable functions? The
space of functions which vanish at x = 1

2
?

Solution: Using the fundamental theorem of calculus we get that the integral
of a polynomial is a polynomial and the integral of a differentiable function is
differentiable. Therefore the answer to the first two questions is yes. To answer
the last question consider the function f(x) = (x − 1

2
)2 = x2 − x + 1

4
. Note that

f(1
2
) = 0 and (Tf)(1

2
) =

∫ 1
2

0
f(t)dt = 37

24
, hence, the answer to the last question is no.
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