
First homework assignmentp. 5
Exercise 1. Verify that the set of complex numbers of the form x + y

√
2,

where x and y are rational, is a subfield of the field of complex numbers.
Solution: Evidently, this set contains 0 and 1. It is also easy to check that

it is closed under the addition and multiplication. Then most of the axioms of
the field follows directly from the corresponding properties of complex numbers.
The nontrivial part of this exercise is to prove that for any element z = x + y

√
2,

where x and y are rational, its inverse also has this form. Consider an element
z′ = x− y

√
2. Then the product zz′ = x2− 2y2 is rational. Hence, the number z′

x2−2y2

has the desired form. On the other hand, its product with z is 1. So the inverse
is given by the formula x

x2−2y2 − y
x2−2y2

√
2.Exercise 3. Are the following two systems of linear equations equivalent?

If so, express each equation in each system as a linear combination of the equa-
tions in the other system.

−x1+ x2+ 4x3 = 0
x1+ 3x2+ 8x3 = 0
1
2
x1+ x2+

5
2
x3 = 0

x1 −x3 = 0
x2 +3x3 = 0

Solution: For instance, let us express the first equation of the first system
as the linear combination of the equations of the second system. Use the method
of undetermined coefficients:

−x1 + x2 + 4x3 = a(x1 − x3) + b(x2 + x3),

where a, b are the numbers that we want to find. Comparing coefficients with x1

in both sides, one gets
−1 = a,

and comparing coefficients with x2, one gets

1 = b.

Then it is easy to check that the coefficients with x3 in both sides coincide. Hence,
the first equation of the first system is the linear combination of the equations
of the second system with coefficients −1 and 1. To complete the solution one
just need to apply the same method and express the other equations of the first
system via the equations of the second one, and vice versa.

Exercise 5 Let F be a set which contains exactly two elements, 0 and 1.
Define an addition and multiplication by the tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1
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Verify that the set F , together with these two operations, is a field.

Solution The solution was explained in the first recitation.

Exercise 7 Prove that each subfield of the complex numbers contains ev-
ery rational number.

Solution: Let F be a subfield of C. Since F is a field it must contain a
distinguished element 0̃ which plays the role of the additive identity. But this
element is unique (regarded as a complex number) therefore 0̃ = 0, where 0 is
the usual 0 of the complex numbers. Therefore 0 ∈ F . Analogously we may con-
clude that 1 ∈ F . But if 1 ∈ F then we must have that 1 + 1 = 2 ∈ F (notice that
1 + 1 = 2 since the addition inside of F is the same addition as the usual addition
of complex numbers). Using induction we conclude that N ⊂ F (if n ∈ F then
since addition is closed n + 1 ∈ F ). But F must contain all the additive inverses
of all its elements, in particular, since N ⊂ F we must have Z ⊂ F . Also, since
F is a field, it must contain all multiplicative inverses of its elements, therefore
1
Z := { 1

n
| n ∈ Z} ⊂ F . Now let a

b
with a, b ∈ Z, b 6= 0 be any rational number, we

know a ∈ Z ⊂ F and 1
b
∈ 1

Z
⊂ F therefore a

b
= a · 1

b
∈ F . That is, F contains every

rational number.

pp. 10-11Exercise 2. If

A =




3 −1 2
2 1 1
1 −3 0




find all solutions of AX = 0 by row-reducing A.

Solution: Denote with S(A,B) the operation of swapping rows A and B.
And denote with c · A + B the operation of multiplying row A times c and adding
it to row B.




3 −1 2
2 1 1
1 −3 0


S(I,III)+3




1 −3 0
2 1 1
3 −1 2


−2·I+II+3




1 −3 0
0 7 1
3 −1 2


−3·I+III+3




1 −3 0
0 7 1
0 8 2


 − 1

7
·II

+3




1 −3 0
0 1 1

7

0 8 2


−8·II+III+3




1 −3 0
0 1 1

7

0 0 6
7


 7

6
·III

+3




1 −3 0
0 1 1

7

0 0 1



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Therefore the only solution of AX = 0 is X = 0.

Exercise 3. If

A =




6 −4 0
4 −2 0
−1 0 3




find all solutions of AX = 2X and all solutions of AX = 3X.Solution Notice that the equation AX = 2X is equivalent to the equation
AX − 2X = 0 which is equivalent to AX − 2IX = 0 where I is the 3 × 3 identity
matrix. This last equation can be factored as (A − 2I)X = 0. Writing explicitly
A− 2I we get

A− 2I =




4 −4 0
4 −4 0
−1 0 1




which is row equivalent to 


1 0 −1
0 1 −1
0 0 0




thus the solutions are the elements in the set{(x1, x2, x3) | x1 = x2 = x3} Analo-
gously for the system AX = 3X we get that the solutions are the elements in the
set {(x1, x2, x3) | x1 = x2 = 0}.

Exercise 8. Consider the system of equations AX = 0 where

A =

(
a b
c d

)

is a 2× 2 matrix over the field F . Prove the following.

(a) If every entry of A is 0, then every pair (x1, x2) is a solution of AX = 0.

Solution: 0 · x1 + 0 · x2 = 0.

(b) If ad−bc 6= 0, then the system AX = 0 has only the trivial solution x1 = x2 = 0.
Solution I: Define A−1 in the following way:

A−1 =
1

ad− bc

(
d −a
−b c

)

Notice that A · A−1 = I therefore, if AX = 0 then AA−1X = 0, i.e. IX = X = 0Solution II: Since at this point we are not supposed to know how to
multiply matrices let us work a horribly complicated solution. The proof
goes by cases:
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1. a = 0 in this case, since ad − bc 6= 0 we know that bc 6= 0 therefore b 6= 0
and c 6= 0. Therefore we can perform the following reduction:

(
0 b
c d

)
S(I,II)+3

(
c d
0 b

)
1
c
I

+3

(
1 d

c

0 b

)
1
b
II

+3

(
1 d

c

0 1

)
− d

c
II+I

+3

(
1 0
0 1

)

Thus AX = 0 and IX = 0 have the same solutions, but the latter system
only has the trivial solution.

2. a 6= 0 In this case we can perform the following reduction:
(

a b
c d

)
1
a
I

+3

(
1 b

a

c d

)
−cI+II+3

(
1 b

a

0 ad−cb
a

)
a

ad−bc
II
+3

(
1 b

a

0 1

)
− b

a
II+I

+3

(
1 0
0 1

)

Thus AX = 0 and IX = 0 have the same solutions, but the latter system
only has the trivial solution.

(c) If ad− bc = 0 and some entry of A is different from 0, then there is a solution
(x0

1, x
0
2) such that (x1, x2) is a solution if and only if there is a scalar y such

that x1 = yx0
1, x2 = yx0

2.Solution:
Suppose that a is the nonzero entry. Since ad− bc = 0 we know that ad = bc.
Thus we can perform the following reduction of A::

(
a b
c d

)
1
a
I

+3

(
1 b

a

c d

)
−cI+II+3

(
1 b

a

0 0

)

Thus AX = 0 if and only if x1 = − b
a
x2, letting x0

1 = − b
a

and x0
2 = 1 we obtain

what we want. An analogous argument can be given if we assume any other
of the entries to be different from 0.

pp. 15-16Exercise 3. Describe explicitly all 2× 2 row-reduced echelon matrices.

Solution: The first element in the first row of a row-reduced echelon matrix
is either 1 or 0. In either case the first element in the second row is 0. The second
entry in the second row is again either 1 or 0. However, the former is possible
only if the first entry in the first row is not 0. So there are 3 possibilities to fill
out all entries except the upper right:

(
1 x
0 1

)
,

(
1 x
0 0

)
,

(
0 x
0 0

)
.

In the first case, x is necessarily 0, in the third case x is either 1 or 0, while in
the second case x can be arbitrary. Thus an infinite family of 2 × 2 row-reduced
echelon matrices parameterized by an element c ∈ F

(
1 c
0 0

)
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and three other 2× 2 row-reduced echelon matrices
(

1 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
0 0

)

exhaust all possibilities.Exercise 7. Find all solutions of

2x1− 3x2− 7x3+ 5x4+ 2x5 = −2
x1− 2x2− 4x3+ 3x4+ x5 = −2
2x1 − 4x3+ 2x4+ x5 = 3
x1− 5x2− 7x3+ 6x4+ 2x5 = −7.

Solution: Consider the augmented matrix of this system



2 −3 −7 5 2 −2
1 −2 −4 3 1 −2
2 0 −4 2 1 3
1 −5 −7 6 2 −7


 .

It is easy to check that the sum of the first and the second rows is equal to
the sum of the third and the fourth rows. Hence, the fourth row is the linear
combination of the other rows and can be eliminated.

Now subtract the second row times 2 from the first and the second rows. We
get 


0 1 1 −1 0 2
1 −2 −4 3 1 −2
0 4 4 −4 −1 7


 .

Interchange the first and the second rows



1 −2 −4 3 1 −2
0 1 1 −1 0 2
0 4 4 −4 −1 7


 ,

and subtract the second row times 4 from the third one



1 −2 −4 3 1 −2
0 1 1 −1 0 2
0 0 0 0 −1 −1


 .

Consider the system corresponding to the latter matrix

x1 −2x2 −4x3 +3x4 +x5 = −2
x2 +x3 −x4 = 2

0 0 0 0 −x5 = −1
.
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We get that x5 = 1, x2 = −x3+x4+2, x1 = 2x2+4x3−3x4−3. Hence, for any choice of
(x3, x4) there is a unique pair (x1, x2) such that (x1, x2, x3, x4, 1) satisfy the system.
Then the solutions are parameterized by two elements a, b ∈ F :

x1 = 1 + 2a− b
x2 = 2− a + b

x3 = a
x4 = b
x5 = 1.

Exercise 10. Suppose R and R′ are 2 × 3 row-reduced echelon matrices
and that the systems RX = 0 and R′X = 0 have exactly the same solutions. Prove
that R = R′.

Solution: The main idea is to prove that each row of each matrix is a linear
combination of the rows of the other matrix.

First, suppose that one of the matrices R, R′ has one zero row. Then the so-
lutions of the corresponding system depend on 2 parameters. Hence, the other
matrix also has a zero row, and the second rows of R,R′ coincide (they are both
zero). Consider a 2 × 3-matrix A whose first row is the first row of R and whose
second row is the first row of R′. The corresponding system again has the same
2-parameter family of solutions as the systems RX = 0, R′X = 0. Thus a row-
reduced echelon matrix equivalent to A should have one zero row. This is pos-
sible only if the rows of the matrix A coincide (since both rows of A have leading
coefficients 1).

Now suppose that all rows of matrices R, R′ are non-zero. Then the solutions
of the corresponding system depend on 1 parameter. Form a 3 × 4-matrix B
whose first two rows are the rows of R and whose last two rows are the rows of
R′. Then B should be row equivalent to a matrix with two zero rows (otherwise
the system BX = 0 would not have a 1-parameter family of solutions). Hence,
the rows of of R′ can be represented as linear combinations of the rows of R and
vice versa. This is possible only if the leading coefficients of their first rows occur
at the same place. Indeed, if for instance, the first row R′

1 of R′ starts with more
zeros than the first row of R, then so do the second row R′

2 of R′ and any linear
combination of R′

1, R
′
2. Using similar arguments one can prove that the leading

coefficients of the second rows of R, R′ occur at the same place. Then it is easy
to see that the only way for a row of R to be a linear combination of the rows of
R′ is to coincide with the respective row of R′.

6


