Solutions to Homework 9
MAT308, Spring 2011

Section 12.2, #36.
36. (a),(b) Let £ = u and y = v, so that £ = @ and § = ¥. The equations of the given
syatem then become

0 -3z —2y =0,
t—y+2z=0.
The first-order system of dimension 4 equivalent to the given system is therefore
T =u,
j=v,
U= — 2z 4y,
v =3z + 2y,

which is the desired standard form.
(c) Write the original system in operator form:

—3z + (D? — 2)y =0,
(D% +2)z —y =0.
Operating on the second equation with D? — 2 and adding the result to the first equation
eliminates y to get —3z + (D? — 2)(D? + 2)z = 0, or equivalently, (D* — 7)z = 0. The
characteristic equation is 74 — 7 = (r?2 + V7)(r? — v/7) = 0 with roots r1, = 74
rg4 = +i7'/%. Therefore, with w = 71/4, the general solution for z = z(t) is given by

z(t) = c1* + cpe™ ¥ + c3coswt + ¢4 sinwt.
The second equation of the original system can then be solved for y = y(t) to get
y(t) =%+ 2z
= cw?e”t + cow?e ¥t — caw? coswt — cqw? sinwt
+ 2(016“Jit + coe” %t + c3coswt + ¢4 sinwt)

=c1(2 + w?)e¥t + c3(2 + w?)e ™Y + c3(2 — w?) coswt + c4(2 — w?) sinwt.

Section 13.1, #7.

—et 4 2e7t
—2e! + 2¢7t



Section 13.1, #10.

10. First, identify the constant matrix A to be A = (? _;) The eigenvalues A of A
satisfy
21 -1 .
det(A — M) = 1 9_ ) =2-N2-MN+1=X-4+5=0.

Hence, the eigenvalues are complex: A;p = 24 4.

For \; =2+, we want u = (Z) to satisfy

: -1 -1 U —iu —v 0
@-eeann= (7 35) () - (05 - (0)
This implies the scalar equations —iu — v = 0 and u — v = 0. Since the second equation

is 7 times the first equation, these equations are equivalent. Solving the first equation for v
i

gives v = —iu. Choosing u = 1 gives the eigenvector u = (—i

For Ay =2 — 4, we want v = (Z) to satisfy

(A-(@2-i))v= (; _1) (Zﬁ) = (L“J,Z) - (8)'

This implies the scalar equations iu — v = 0 and uw + iv = 0. Since the first equation is
i times the second equation, these equations are equivalent, Solving the first equation for

v gives v = tu, so that choosing u = 1 yields the eigenvector v = (1) Therefore, with

x(t) = (z(t),y(t)), the general solution of the given system is

x(t) = creMtu + cpe™?tv = ¢ e?H? (_t) 1+ eyt (1)

=cye®t(cost + isint) (_1) + cge®*(cost — isint) (1 )
ot cjcost + icysint cycost — icysint
- —tcy cost + ¢p sint icgcost + cosint

_ 2 ( (c1 + ) cost +i(c; — ¢2) sint)
- —i(c; — cg)cost + (c1 + ¢a)sint
The initial condition gives (1) = x%(0)= ( 61 3
0 —i(eg — c)
c1+ca =1, —i(e; — cg) = 0. The second equation implies ¢; = ¢g, so that the first equation
gives ¢ = ¢y = % The desired solution is therefore

t et cost
£) =2t 95 ) = ot
x(t)=e (smt eZtsint

) , which implies the scalar system



Section 13.1, #11.

1 —1 1
(@) zp(t) =ae ™ | =1 | +be' | 4 | +ce™ |2
—1 1 1
—5/2
(b) a,(t) = [ 9/2
3/2
. 1 ~1 1 —5/2
(c) x(t) = —56—‘” —1| =2 4 | +2* 2]+ 9/2
-1 1 1 3/2

Section 13.2ABC, #2.

2. Since A = ((1) (1)) and A? = (1) (1) = I, it follows that all odd powers of A are equal

to A and all even powers of A are equal to the identity matrix. Hence,

00 t2j oo t2k+1

e S et L m ot

k=0

We recognize the first series on the right as cosht and the second series on the right as
sinht. Hence,

. cosht 0 0 sinht) cosht sinht
= (cosht) + (sinh¢)A = ( 0 cosht) + (sinht 0 ) T (sinht cosht) :

Section 13.2ABC, #11.

A —el +2e7t et —et
T\ 2et+2et 2t —et

Section 13.2ABC, #22.
0 k
t
22. For any square matrix A with real entries, each term of the serles Z k k'A'C is
k=0

either a matrix with real entries (when the exponent is even) or ¢ times a matrix with real
entries (when the exponent is odd). We can conclude that costA and sintA have the series

representations

® . 129 ) % . 20+ ;
= 1) ——— A% i - 1Y A%+
costA ;( 1) (2j)!A and sintA ;( 1) @it 1)!A ;



Section 13.2ABC, #22 (continued)

0

In the specia,]_ case A = ((1) i) , use mathematical induction to deduce tha’c Ak = (1 5

for all integers k. The series definition of costA can be explicitly written as

=2 . 2 . 00_1jt2f'| 00 (_1}i ?2,"
costA = ;(_1)-7(;_]‘_)_!. ((1] 2.7) ot (.ZO (=4 @i ZI (1) (2_7_1).)

1 0 =5 -1V
o j 12 o0 j g2+
_ Xog —04) @! —t350 (-1) [z I (cost —tsint)
= il el . )
0 ¥ (_1)1(_;.3)_! 0 cost

A similar manipulation gives sintA = ( Sl(l)lt ¢ (;?Islz) Hence,

et il ( ooel—t} —(—8) Sin(‘t)) - (C"St _tsmt) E—

0 cos(—t) 0 cost
sin(—tA) = sin(—t)A = (sing—t) S Z?;g:g) =— (Sigt tz(l);i) = —sintA.

1

)

This proves the relations given in part (a) of Exercise 21. To prove the relations given in

part (b) of Exercise 21, we first compute

d d(cost —tsint) (—sint —tcost—sint)
— costA = — =

dt dt 0 cost 0 cost
i ) tA—i sint tcost) _(cost —tsint+ cost
dt e 0 sint /| 0 cost '

We also have
_AcintA — -1 -1 sint t(‘;ost ) —sint -—tcostl——sint
0 -1 0 sint 0 —sint ;
Adoatdl == 1.1 cost —tsint _ cost —tsint 4+ cost :
0 1 0 cost 0 cost
Comparing the two groups of equations, we see that

d . d
7 costA = —AsintA and 7 sintA = AcostA.

This proves the relations given in part (b) of Exercise 21. Finally,

. 2 ) 9
(costA)Z-}—(sintA)?:(COSt -tsmt) +(smt tcost)

0 cost 0 sint
_ [ cos*t —2tsintcost 92 sin®t 2t costsint
0 cos? ¢ 0 sin® ¢

_ cos?t + sin® ¢t 0 (1 0 _7
w 0 cos’t+sin?t / ~ \0 1) "



Section 13.2D, #T7.
1—t 0 t
-t 1t
—t 0 1+4+¢
Section 13.2D, #16.

16. If A is the given matrix then

det A =

O =
Lo o

Hence, A~! does not exist.
18. If A is the given matrix then

det A =

OO
o N O
_0 O
Il
N
<~

Thus, A~! exists for ¢ # 0. Moreover, the characteristic polynomial of 4 is

t—A 0 0
0 2—-x .0
0 0 1—-2A

=({t—-A)2=-N(1-2)

P(X) = det(A — M) =

= -4+ B+ON - (Bt +2))+2t
By the Cayley-Hamilton Theorem, P(A) = 0, so that — A% + (3+t) A% — (3t +2)A+2tI = 0.

If t # 0, multiply this equation by A=! to get —A%2 + 3+ )4 — (3t +2)[ +2tA™1 =0
Solving for A~ gives A=! = (1/2t)(A% — (3 +t)A+ (3t + 2)I). Hence,

t 0 0
)—(3+t)(0 2 0)+(3t+2)(
0 01

OO =
o = O
e il <o B oo



