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MATH 307 Solutions to Midterm 2

1. Let f(z,y) = cos(z) sin(z? + y?).

%
2

(a) Calculate the gradient of f whenz =0and y =

Solution:
Vf(z,y) = (2z cos(z) cos(z® + y*) — sin(z) sin(z® + y?), 2y cos(z) cos(z* + y*))

At (0,+/7/2), this is <o vz > (Recall that sin(0) = 0, cos(0) = 1, and cos(r/4) = 1//2.)
. . \/_ 1
(b) Write the equation of the plane tangent to the surface z = f(z, y) at the point ( 0, —— ")

Solution: Recall that the plane tangent to a surface z = f(x, y) satisfies the equation
z =29+ fo(x — x0) + fy(y — yo). In the current case, we have

2
change of f(z,y) along this curve when ¢ = /2.

(c) A particle is moving along the curve 7(t) = <\/—_ cost, \/2_ 1nt> . Find the rate of

Solution: This means we want to find the directional derivative in the direction of the tan-
gent to y(t) at t = w/2. Notice that v(7/2) = (0, /7/2), and

o NE T V(7/2) _
'y(t)—<—7s1nt,7c:ost>, so 7'(r/2) =(—v/7/2,0), and W_<—1,0>.
Since D, f = (Vf) - u, in the present case we have
Y .
<O, E> -(=1,0) = 0.

This should not be surprising: the curve is traveling parallel to the x—axis at this point, and
from the previous part, the tangent plane is tilted only in the y direction. Thus, the value of
f(z,y) is not changing at this point.
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u+v

2. Letf:R®* - Rand g : R? — R®be givenby f(v,y,2) = 2*+y*+2°, g(u,v) = [u® —v
3

u—v

Write the derivative matrix of f o g at a point (u, v).

Solution: Applying the chain rule, we have

1 1
Dy(u,v) = [ 3u®> -1 and Dy(z,y,2) = (22,2y,2z).
1 —30?
Thus,
D(ng)(U,U) = Df(u+v7u3 —U,u—’US)Dg(U,U>
1 1
= (2u+ 2v,2u3 — 20, 2u — 20*) | 3u® -1

1 —3v?

= (4u + 2v + 6u® — 6uPv — 20°, 2u + 4v — 2u® — 6uv? + 6v°)
If you prefer, you could write the composition
foglu,v) = (u+v)*+ (v’ —v)®+ (u—10*)?
and then compute the gradient to get
(2(u+v) + 2(v® — v)(3u®) + 2(u — v%), 2(u + v) — 2(u® — v) + 2(u — v*)(=30?))

= <4u + 20 + 6u’® — 6uv — 203, 2u + 4v — 2u® — 6uv? + 61}5>

23—y .

— if 0

15 pts.| 3. Let f(z,y) = 22+ 42 ifzi+y 7 .
0 if 22+ 92 =0

If not, identify any discontinuities. Justify your answer fully.

Is f(z,y) continuous at all (z,y) € R*?

Solution: This is continuous at all points of R?. The only potential issue is near the origin,
but it isn’t hard to see that lim, 4 —,(0,0) f(z,y) = 0.

Perhaps the easiest way is to rewrite the function in polar coordinates.
Let x = rcosf, y = rsind, so f(z,y) becomes

r3cos®d — r3sin®0 2

cos0 — sin® 6
r2cos?f +r2sin’0  r? 1

= r(cos®  — sin® 0)

This obviously tends to 0 as 7 — 0, no matter what 6 does.
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4. Two surfaces are given by f(z,y,2) =0and g(z,y,2) =0,
where f(z,y,2) =2 +2y° +32> -6
g(zy,2) =2 +y* =2 =1

Let () be the curve where they intersect.
Determine the line tangent to y at (1,1, 1).

(Note: it is not necessary to determine ~(¢), but you may.)

Solution: Implicit differentiation gives us (writing =’ for dz/dt, etc.):
2xx’ +4yy + 622" =0 2xa’ + 2yy — 222" =0
Evaluating at (1,1, 1) and dividing by 2 gives
+2y +32=0 ¥4y —2=0

soy = —4z and 2/ = 52'. Thus, (5, —4, 1) will be tangent to the curve of intersection, and
the tangent line can be written as

(1,1,1) + t (5,—4,1)

Alternatively, if you prefered to find ~(¢), we can do the following. You might have a minor
variation that gives an equivalent answer.

First, if we set f(z,y, z) = g(z,y, z), we obtain
y> + 42> —5=0, or y?=5-—42"
Substituting this back into g(z,y, z) = 0 yields
?+(5—42%) -2 -1=0, or r? =52 — 4.
Putting these two together, and letting z* = ¢ gives us
y(t) = (5t — 4,5 — 4¢,t) , with ~(1)=(1,1,1).

Hence +/(1) = (5, —4, 1). The tangent line at t = 1 can be written as (1,1, 1) +¢ (5, —4, 1), just
as via implicit differentiation.

Note that we cannot just take the partials of f(x,y,2) — g(z,y, 2) and plugin (1,1,1); a few
people tried this.

You could, however, observe that the tangent line to 7(¢) lies in both tangent planes to f
and g. Thus, you could find the normals Vf(1,1,1) = (2,4,6) and Vg(1,1,1) = (2,2, —2).
Then their cross product is (20, —16, 4), and so the tangent line can be written as (1,1,1) +
5 (20, —16, 4).
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5. Find the point on the sphere 2% + y* + 2? = 1 which is furthest from the point (1, 2, 3).

Solution: The easiest way to do this problem is to notice that the solution must lie on the

1 2 -3
line (¢, 2t, 3t). We also require 2? + y* + z* = 1, so the answer must be < ) :

V14 V147 V14
If you want to work harder, you could use Lagrange multipliers. We want to maximize
f(z,y,2) = (—1)2+(y—2)2+ (2 — 3)? subject to the constraint g(z,y, 2) = 2 +y?+22—1 = 0.
Hence, we find the solutions to V f + A\Vg = 0. We have

2@ -1 +2xx=0 2y—2)+2\y=0 2(z—3)+2Xz=0

-1 -2 =3
_ 1 _ 2 3 a 2 .2 1 .2
SOT = .Y = 7,2 = 15 Since we need z? + y° + 2° = 1, we get (\/ﬂ’ )as

V14’ /14

the maximum.

6. Find all of the critical points of z* — 6zy — 6y*. For each, state whether it is a local mini-
mum, local maximum, or neither.

Solution: We calculate the gradient as (32 — 6y, —6x — 12y). Thus, we must have
322 —6y =0 —6x—12y =0

or 22 = 2y, x = —2y. Hence 4y?> — 2y = 0, and so y = 0 or y = 1/2. This means the only
critical points are (0,0) and (—1,1/2).

Note that f,,(z,y) = 6z, fy,(z,y) = —12, and
fay(z,y) = —6.

At (0,0), the discriminant f,, f,, — fz, = —36 <
0, so this is a saddle point.

At (=1,1/2), focfyy — f7, = +36, and both f,,
and f,, are negative. Thus (—1,1/2) is a local
maximum.

A picture of the surface is at right. Note that the
r-axis increases to the left in the picture. (sorry,
it is too hard to see otherwise.)
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