Final Exam Solution Guide
MAT 200

There are seven questions, of varying point-value.
Each question is worth the indicated number of points.

1. (15 points) If X is uncountable and A C X is countable, prove that
X — A is uncountable. What does this tell us about the set of irrational real
numbers?

A set is called countable if it is either finite or denumerable. A set YV is
countable if and only if there exists an injection f :Y — Z*.

Our hypotheses say that A is countable and that X is uncountable. We
now proceed via proof by contradiction. If X — A were countable, there would
be an injection f : (X — A) — Z™T. Since A is countable by hypothesis, there
is certainly an injection g : A — Z*. The function h : X — Z* defined by

2 (x), ifreA
h(z) = { 2f(g;>g—|— 1, fze(X—-A)

would then be injective, sending distinct elements of A to distinct even inte-
gers and distinct elements of X — A to distinct odd integers. Thus X would
be countable, in contradiction to our hypothesis. This shows that X — A
must be uncountable.

As an application, we now consider the example given by X = R and
A = Q. Since Cantor proved that the set R of real numbers is uncountable,
and since the set Q of rational number is countable, it follows that the set
R — Q of irrational real numbers is uncountable.



2. (15 points) Prove by induction that

st n+1

for every positive integer n.

For any n € Z*, let P(n) be the statement that

Zl{j?) n—i—l

The base case P(1) then says that
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which is certainly true.
We now need to prove that P(m) = P(m + 1) for any positive integer
m. Thus, suppose that
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holds for some positive integer m. It then follows that
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so we have shown that the statment P(m + 1) is a logical consegence of the
statement P(m).
By the principle of induction, P(n) therefore holds for all n € Z*.
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3. (15 points) Let X and Y be finite sets, with | X| =n > 3 and |Y]| = 3.
Compute

Hf X =Y ’ f surjective }’
Hint: How many f aren’t surjective? Use the inclusion/exclusion principle.

Let y;, j = 1,2, 3, denote the three elements of Y, so that

Y - {ylv Y2, 3/3}

For j =1,2,3, let A; be the set of all functions f : X — Y — {y;}. Thus

—

Aj={f: X =Y |y & (X},
We then have
AjUAUA3={f: X — Y | fis not surjective}.

Now
Al =Y = {y;} ¥ =27

for each j. Similarly

for each j # k, and
AiNAyNA;=0.

The inclusion/exclusion principle therefore implies that

AT U Ay UAs] = D A=) A N A + A1 N Ay A
j j<k

= 3-2"-3

Since

(X = vy =¥ =g

we therefore have

Hf:X—>Y ) f surjective H:3“—(3-2”—3):3(3"*1—2"+1).



4. (15 points) Let A and B be distinct points in the plane. Assuming the
axioms of Euclidean geometry, prove that the set

— { C € Plane ‘ |AC| = |BC| }

is a line.

Hint: First show that there is a unique line ¢ through the mid-point of AB
which meets AB in a right angle. Then show that L. = /.

By the ruler axiom, the segment AB has a mid-point, which is the unique

M € AB with |AM| = |[MB|. Choose a side of AB, which we treat as the
interior of the straight angle ZAMB. The protractor axiom then says that we

can find a umque ray MD on the chosen 51de of AB such that mZAMD = 7 /2.

If D € I\/ID is on the opposite side of AB from D, we have mZAMD =
mZ/AMD" = m/BMD = m/BMD" = 7/2 by vertlcal and supplementary

—

angles, so we would have therefore constructed exactly the same line MD if
we had instead chosen the opposite side of AB, or had interchanged A and

B. The line £/ =MD is therefore uniquely defined; it is usually called the
perpendicular bisector of AB.
Let us next show that L. C ¢. If C € L, then |AC| |BC|, by the definition

of L. If C € AB we then have C =M, so C € / MD as claimed. Otherwise,
the triangles AAMC and ABMC are well defined, as in each case the given
vertices are not collinear. However, |AC| = |BC|, |AM| = |[BM| and |MC| =
IMC|. Hence AAMC = ABMC by the SSS congruence theorem. Therefore
mZAMC = mZBMC. Since these angles are supplementary, we therefore

have mZAMC = 7 /2. Hence MC= ¢, and C e (. Thus (Ce L) = (C e /),
and L C /7, as claimed.
We now show that ¢ C L. If C € ¢, either C = M, and hence C €

L, or else C & 1T3 In the latter case, AAMC and ABMC are then well
defined. Moreover, mZ/AMC = m/ZBMC = x/2, since (¢ is perpendicular to

AB. Moreover, |[AM| = |[BM| and |[MC| = |[MC|. Consequently, AAMC =
ABMC by the SAS congruence axiom. Hence |AC| = |BC|, and so C € L.
That is, (C€ () = (Ce€ L), and ¢ C L.

Since L. C ¢ and ¢ C L, IL = /. In particular, L is a line, as claimed.



5. (10 points) Let n > 2 be an integer. Use modular arithmetic to show that

(5) ="

is always an integer, and is even if and only if n = 0 or 1 mod 4.
The question is equivalent to showing that
n(n—1) =0 or 2mod 4
for any integer n, and that
n(n —1) =0 mod 4

iff n =0 or 1 mod 4.
Modulo 4, any integer n is congruent to 0, 1, 2, or 3. Let us tabulate the
relevant products of remainders mod 4:

n—1|n(n-1)

0

Wi —=o 3
| —| of wl |

0
2
2

Thus n(n — 1) = 0 or 2mod 4 for any n, and is = 0 mod 4 if and only if
n =0 or 1 mod 4, exactly as claimed.



6. (20 points) (a) Use modular arithmetic to prove the following:
If n is an integer, and if n? is divisible by 5, then n is divisible by 5.

Hint: What is the contrapositive, in terms of congruence mod 57

We must show that (n # 0 mod 5) = (n? # 0 mod 5). Since any integer
is congruent mod 5 to 0, 1, 2, 3, or 4, we merely need to make a table of
squares, modulo 5:

S

Slwlio—=lol 3
= RO

By direct inspection, we conclude that n? # 0 mod 5 whenever n # 0 mod 5,
as claimed.

(b) Use part (a) to prove that there is no rational number ¢ with ¢*> = 5.
Conclude that v/5 ¢ Q.

Hint: If there were such a ¢, first argue that it could be expressed as a/b,
where at least one of the integers a,b isn’t divisible by 5.

Any rational number ¢ may be expressed as a quotient a/b, where a € Z,
b € Z*, and by repeatedly cancelling common factors of 5, we may assume
that at most one of a, b is divisible by 5. Now, having done this, let us assume
our rational number ¢ satisfies ¢> = 5. We then have Z—j = 5, so that a? = 5b?
and a®> = 0 mod 5. But, by part (a), this implies that @ = 0 mod 5. Hence
a = 5n for some n € Z, and

2502 a?

oY

and hence b> = 5n?. Thus b*> = 0 mod 5. and part (a), this implies that
b = 0mod 5. That is, both a and b are divisible by 5, contradicting our
assumption. Hence no such ¢ exists; that is, v/5 cannot be a rational number.



7. (10 points) Let X and Y be sets, and let f : X — Y be a function. For
a,b € X, define the expression
a~b

to mean that
fla) = f(b).

Prove that ~ is an equivalence relation on X.

We need to verify that ~ is
(R) reflexive:
(S) symmetric; and
(T) transitive.

Reflexive: Since f(a) = f(a) for any a € X, we always have a ~ a. Thus ~
is reflexive.

Symmetric: If f(a) = f(b), it follows that f(b) = f(a). Thus (¢ ~ b) =
(b~ a), and ~ is therefore symmetric.

Transitive: If f(a) = f(b) and f(b) = f(c), it follows that f(a) = f(c). Thus
(a ~band b~ c) = (a~c), and ~ is therefore transitive.

Since the relation ~ on X is reflexive, symmetric, and transitive, it follows
that ~ is an equivalence relation.



