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2. Triangles and congruence of triangles

2.1. Basic measurements. Three distinct lines, a, b and c, no two of which are parallel,
form a triangle. That is, they divide the plane into some number of regions; exactly one of
them, the triangle, is bounded, and has segments of all three lines on its boundary.
The triangle with vertices A,B,C is denoted by4ABC, where A is the point of intersection

of the lines b and c; B is the point of intersection of the lines a and c; and C is the point
of intersection of the lines a and b. These points of intersection divide each of the lines into
two unbounded half-lines and one bounded line segment, called a side of the triangle.
The triangle, 4ABC, defines 6 numbers, the angle measures (also called the angles) at

the vertices A, B and C, and the lengths of the sides, which are the line segments BC, AC
and AB.
The angle measure at for example the vertex A is denoted by m∠A, or m∠BAC.

2.2. Historical note. The use of the phrase “measure of an angle” is relatively modern.
Up to about 50 years ago, the measure of the angle at A was simply denoted by A or ∠A, and
it was left to the reader to distinguish between the angle and its measure. When convenient,
we will follow this convention, and use the same notation for an angle and its measure.

2.3. More on measurements. We will always give angle measures in radians, so, if A B
and C all lie on a line, with B between A and C, then m∠ABC = π.
We denote the length of the side AB, for example, by |AB|. Until modern times, the side

and its length were denoted by the same symbol, and the reader had to figure out which is
which from the context. As with angles, when convenient, we will also use the same notation
for a line segment and its length.
The pair of lines, a and b, for example, determines two angles; the question of which of

these angles is determined by the triangle can be stated in words with difficulty; we will
leave this as visually obvious.

2.4. Congruence. Two triangles,4ABC and4A′B′C ′, are congruent if the corresponding
angles have equal measures, and the corresponding sides have equal lengths. That is, the
triangles, 4ABC and 4A′B′C ′ are congruent if m∠A = m∠A′; m∠B = m∠B′; m∠C =
m∠C ′; |AB| = |A′B′|; |AC| = |A′C ′|; and |BC| = |B ′C ′|. In this case, we write 4ABC ∼=
4A′B′C ′.
For physical triangles, two triangles are congruent if they exactly match if you put one on

top of the other. Another way of saying this, for ideal triangles, is that there is an isometry
of the plane (a composition of rotation, translation and reflection) that maps one exactly
onto the other.

Exercise 2.1: Show that congruence of triangles is an equivalence relation.

2.5. Important remark about notation. It is essentially obvious that congruence of
triangles is an equivalence relation. However, the statement that 4ABC ∼= 4A′B′C ′ says
nothing about whether 4BCA is or is not congruent to 4A′B′C ′. More precisely, the
statement 4ABC ∼= 4A′B′C ′ not only tells you that these two triangles are congruent, but
also tells you that m∠A = m∠A′, |AB| = |A′B′|, etc.
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2.6. The axiom for congruence.

Axiom 5 (ASA). If m∠A = m∠A′, m∠B = m∠B′ and |AB| = |A′B′|, then 4ABC ∼=
4A′B′C ′.

It is common to refer to the above angle as “Angle-Side-Angle” or ASA.
For physical triangles this is essentially obvious. If you know the length of a side, and you

know the two angles, then the lines on which the other sides lie are determined, so the third
vertex is also determined.

2.7. Exercises. A physical triangle is determined by 6 pieces of information, the 3 lengths
and the 3 angles. There are 6 possible statements concerning 3 pieces of information. Con-
vince yourself that AAA and SSA are false, while AAS, ASA, SAS and SSS are true. (There is
nothing here for you to hand in, but you need this information for the next two questions.)
Remark: One of these, AAS, is not obvious; in fact it is false in spherical geometry.
In the following few exercises, when you are asked to prove something you may assume

that AAS, ASA, SAS and SSS are true. One other fact that you may use is Thm. 3.4: the
sum of the angles of a triangle is π. Note that this is only for these exercises; in general we
cannot assume things we have not proven or taken as an axiom, because we may wind up
applying circular reasoning (that is, giving a proof that something is true which implicitly
assumes it was true to begin with.) But the main point of this exercise is to get you thinking
about how geometry works, so we can relax our restrictions a little.

Exercise 2.2: Is it true that no 2 pieces of information suffice to determine a triangle? That
is, can you find two pieces of information so that if you have any two triangles for which
these two measurements are the same, the triangles must necessarily be congruent. Prove
your answer.

Exercise 2.3: What about 4 pieces of information; i.e., do any four pieces of information
suffice for congruence of triangles? Prove your answer.

A quadrilateral is a region bounded by four line segments; that is, it is a four-sided figure.
The quadrilateral with vertices, A, B, C and D, in this order, is determined by the four line
segments connecting A and B, B and C, C and D, and connecting D and A. For ABCD
to form a quadrilateral, these segments must not intersect except at the verticies.
A quadrilateral defines 8 pieces of information: the lengths of the four sides, and the

measures of the four angles. Two quadrilaterals are congruent if these 8 pieces of information
agree.
What is the minimal number of pieces of information one needs about two quadrilaterals

to prove that they are congruent? (No response needed here, but you need the answer for
the next question.)

Exercise 2.4: State and prove one congruence theorem for quadrilaterals, where the hy-
pothesis consists of the minimal number of pieces of information.

2.8. Monotonicity of lengths and angles. Here are two more axioms we shall need.
Essentially, they say that for every real number, a segment can be scaled to that length, and
that angles can be subdivided into angles of any measurement between 0 and π.

Axiom 6 (Ruler Axiom). If A B and C are distinct points on a line, in that order, then

|AB| < |AC|. Further, for every positive real number r < |AC|, there is a point B between

A and C so that |AB| = r.
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Axiom 7 (Protractor Axiom). If k is a line, and A is a point on k, then, for every number

α with 0 < α < π, there is a line m through A so that the angles formed by k and m have

measures α and π−α. Further, if 0 < β < α < π, then there is a line n passing through the

sector of angle α formed by k and m, so that n and k form an angle of measure β.

Theorem 2.1 (SAS). If 4ABC and 4A′B′C ′ are such that |AB| = |A′B′|, m∠ABC =
m∠A′B′C ′, and |BC| = |B ′C ′|, then they are congruent.

Proof. Suppose we are given two triangles 4ABC and 4A′B′C ′ as in the statement. If
m∠BCA = m∠B ′C ′A′, then we would be done (by ASA).

A

B

C

D

A

B

C’

’

’

So let us consider the case where they are different, and arrive
at a contradiction. We may assume that m∠BCA > m∠B ′C ′A′

(if not, just exchange the names on the triangles).
Apply the second part of Axiom 7 to find a line passing through
the point C and some point D lying between A and B, so that
m∠BCD = m∠B′C ′A′.
By ASA,4BCD ∼= 4B′C ′A′. Therefore |DB| = |A′B′|. But we
are given that |A′B′| = |AB|. Therefore, |DB| = |AB|. Since D
lies on the line determined by A and B, and lies between them,
this contradicts Axiom 6.

¤

2.9. Isosceles triangles. A triangle is isosceles if two of its sides have equal length. The
two sides of equal length are called legs; the point where the two legs meet is called the apex

of the triangle; the other two angles are called the base angles of the triangle; and the third
side is called the base.
While an isosceles triangle is defined to be one with two sides of equal length, the next

theorem tells us that is equivalent to having two angles of equal measure.

Theorem 2.2 (Base angles equal). If4ABC is isosceles, with base BC, then m∠B = m∠C.

Conversely, if 4ABC has m∠B = m∠C, then it is isosceles, with base BC.

Exercise 2.5: Prove Theorem 2.2 by showing that 4ABC is congruent to its reflection
4ACB. Note that there are two parts to the theorem, and so you need to give essentially
two separate arguments.

2.10. Congruence via SSS.

Theorem 2.3 (SSS). If 4ABC and 4A′B′C ′ are such that |AB| = |A′B′|, |AC| = |A′C ′|
and |BC| = |B ′C ′|, then 4ABC ∼= 4A′B′C ′.

Proof. If the two triangles were not congruent, then one of the angles of 4ABC would have
measure different from the measure of the corresponding angle of 4A′B′C ′. If necessary,
relabel the triangles so that ∠A and ∠A′ are two corresponding angles which differ, with
m∠A′ < m∠A.
We find a point D and construct the line AD so that m∠DAB = m∠A′, and |AD| =

|A′C ′|. (That this can be done follows from Axioms 6 and 7.) It is unclear where the point
D lies: it could lie inside triangle ABC; it could lie on the line BC between B and C; or it
could lie on the other side of the line BC. We need to take up these three cases separately.
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Exercise 2.6: Suppose the point D lies on the line BC. Explain why this yields an imme-
diate contradiction.

For both of the remaining cases, we draw the lines BD and CD. We observe that, by SAS,
4ABD ∼= 4A′B′C ′. It follows that |BD| = |B ′C ′| = |BC| and that |AD| = |A′C ′| = |AC|.
Hence 4BDC is isosceles, with base DC, and 4ADC is isosceles with base CD. Since
the base angles of an isosceles triangle have equal measure, m∠BDC = m∠BCD and
m∠ADC = m∠ACD.

B

A C

D

First, we take up the case that D lies outside 4ABC; that is,
D lies on the other side of the line BC from A.

Exercise 2.7: Finish this case of the proof, first by showing
that m∠ADC < m∠BDC and m∠BCD < m∠ACD. Then
use the isosceles triangles to arrive at the contradiction that
m∠ADC < m∠ADC.

We now consider the case where D lies inside 4ABC. Ex-
tend the line BC to some point E. Observe that m∠BCD +
m∠DCA+m∠ACE = π, from which it follows that m∠BCD+
m∠DCA < π. Next, extend the line BD past D to some point
F . Also extend the line AD past the point D to some point G,
and extend the line CD past the point D to some point H.

Exercise 2.8: Finish this case of the proof by explaining why
π < m∠BDC +m∠CDA and m∠BCD +m∠DCA < π, and
then show that this leads to the contradiction π < π.
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2.11. Inequalities for general triangles.

Theorem 2.4 (exterior angle inequality). Consider the triangle

4ABC. Let D be some point on the line BC, where C lies

between B and D. Then

(i) m∠ACD > m∠A.

(ii) m∠ACD > m∠B. DCB

A

Proof. We first prove part (i). Let E be the midpoint of the line segment AC; that is, E lies
on the line AC, between A and C, and |AE| = |EC|. Draw the line BE and extend it past
E to the point F , so that E is the midpoint of BF . Also draw the line CF .

Exercise 2.9: Finish the proof of part (i). Hint: First show
that 4AEB ∼= 4CEF (Thm. 1.1 may be useful.) Use that
to compare m∠A and m∠ECF , and conclude that m∠ACD >
m∠ACF = m∠A. DCB

A

E

F
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For part (ii), we choose E to be the midpoint of the line BC,
and extend AE beyond E to F , so that |AE| = |EF |. Also,
extend the line Now extend the line FC beyond C to some
point G.

Exercise 2.10: Finish the proof of part (ii). First show that
4AEB ∼= 4FEC, and then compare m∠FCE, m∠DCG,
m∠DCA, and m∠B.

¤

The next theorem says that in a triangle, if one angle is bigger than another, the side
opposite the bigger angle must be longer than the one opposite the smaller angle. This is
generalizes the fact that the base angles of isosceles triangles are equal (Thm. 2.2).

Theorem 2.5. In 4ABC, if m∠A > m∠B, then we must have |BC| > |AC|.

Proof. Assume not. Then either |BC| = |AC| or |BC| < |AC|.

Exercise 2.11: Show that if |BC| = |AC|, the assumption m∠A > m∠B is contradicted.

Exercise 2.12: Now assume |BC| < |AC|, find the point D on
AC so that |BC| = |CD|, and draw the line BD. Finish the
proof in this case. Hint: Use Thm. 2.4 and the fact that |BD| =
|CD| to conclude that m∠CDB > m∠A. Now observe that
m∠DBC < m∠ABC. Explain why this gives the contradiction
m∠CBD < ∠CBD. CB

A
D

¤

The converse of the previous theorem is also true: opposite a long side, there must be a
big angle.

Theorem 2.6. In 4ABC, if |BC| > |AC|, then m∠A > m∠B.

Proof. Assume not. If m∠A = m∠B, then 4ABC is isosceles, with apex at C, so |BC| =
|AC|, which contradicts our assumption.
If m∠A < m∠B, then, by the previous theorem, |BC| < |AC|, which again contradicts

our assumption. ¤

The following theorem doesn’t quite say that a straight line is the shortest distance between
two points, but it says something along these lines. This result is used throughout much of
mathematics, and is referred to as “the triangle inequality”.
Theorem 2.7 (the triangle inequality). In 4ABC, we have

|AB|+ |BC| > |AC|

.

Exercise 2.13: Prove the triangle inequality: First extend AB to a
point D so that |BD| = |BC|, then form the isosceles triangle 4BDC.
Use this triangle and Thm 2.2 to show that m∠ADC < m∠ACD.
Conclude that |AD| > |AC| by using another theorem from this section.
Then show that |AB|+ |BC| > |AC|.

B C

D

A
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2.12. Congruence via AAS.

Theorem 2.8 (AAS). Suppose we are given triangles ABC and A′B′C ′, where m∠A =
m∠A′, m∠B = m∠B′, and |BC| = |B ′C ′|. Then 4ABC ∼= 4A′B′C ′.

Proof. We first observe that, by either SAS or ASA, if |AB| = |A′B′|, then 4ABC ∼=
4A′B′C ′. Hence we can assume that |AB| 6= |A′B′|, from which it follows that either
|AB| < |A′B′| or |AB| > |A′B′|. We can assume without loss of generality that |AB| > |A′B′|
(that is, if we had that |AB| < |A′B′|, then we would interchange the labelling of the two
triangles).

Now find the point D between A and B, so that |BD| =
|A′B′|. Observe that, by SAS, 4DBC ∼= 4A′B′C ′. Hence
m∠BDC = m∠A′ = m∠A. This contradicts that fact that,
since ∠BDC is an exterior angle for 4ADC, we must have that
m∠BDC > m∠A. C

A

B

D

¤

This concludes the generalities concerning congruence of triangles. We now know the four
congruence theorems, ASA, SAS, SSS and AAS. We also know that the other two possibilities,
SSA and AAA, are not valid. It follows that, for example, if we are given the lengths of all
three sides of a triangle, then the measures of all three angles are determined. However, we
do not as yet have any means of computing the measures of these angles in terms of the
lengths of the sides.

2.13. Perpendicularity and orthogonality. Two lines intersecting at a point A are
perpendicular or orthogonal if all four angles at A are equal. In this case, each of the angles
has measure π/2. These angles are called right angles. It is standard in mathematics to use
the words perpendicular and orthogonal interchangeably.

Basic Construction. Given a line k, and any point A, there is a line through A perpen-
dicular to k.

Exercise 2.14: Prove that the line through A perpendicular to k is unique. (Note that A
may or may not lie on k.)

In any triangle, there are three special lines from each vertex. In 4ABC, the altitude from
A is perpendicular to BC; the median from A bisects BC (that is, it crosses BC at a point
D so that |BD| = |DC|); and the angle bisector bisects ∠A (that is, if E is the point where
the angle bisector meets BC, then m∠BAE = m∠EAC).

Theorem 2.9. If A is the apex of the isosceles triangle ABC, and AD is the altitude, then

AD is also the median, and is also the angle bisector, from A.

Exercise 2.15: Prove this theorem. (Hint: Construct the altitude and apply AAS to the
pair of resulting triangles.)

Theorem 2.10. In an isosceles triangle, the three altitudes meet at a point.
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Proof. Let A be the apex of the isosceles 4ABC, and let AD be the
altitude, which is also the median and the angle bisector. Similarly, let E
be the endpoint on AC of the altitude from B, and let F be the endpoint
on AB of the altitude from C. Let G be the point of intersection of AD
with BE, and let H be the point of intersection of AD with CF . We need
to prove that G = H.
By AAS, 4FAC ∼= 4EAB. Hence |AF | = |AE|. Since AD is also the
angle bisector, by ASA, 4AFH ∼= 4AEG. Hence |AH| = |AG|, from
which it follows that G = H. ¤

C
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F

G
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Exercise 2.16: Prove that the three angle bisectors in an isosceles triangle meet at a point.

Exercise 2.17: Prove that the three medians in an isosceles triangle meet at a point.


