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4. Lengths, areas and proportions

We now turn to a brief discussion of area. Rather than carefully developing this theory,
we shall begin with some “obvious” facts, such as

(i) The area of a rectangle which has side lengths a and b is ab.
(ii) Congruent figures have equal area
(iii) The area of a region obtained as a union of two non-overlapping regions is the sum

of the areas of these regions.

4.1. Right triangles. A right triangle is one which contains a right angle. The two sides
emanating from the right angle are called the legs of the triangle; the third side, opposite
the right angle is the hypoteneuse.

Proposition 4.1. If the legs of a right triangle have lengths a and b, then the area of the

triangle is 1
2
ab.

Exercise 4.1: Prove this proposition by constructing an appropriate rectangle.

Proposition 4.2. In 4ABC, if D is the endpoint of the altitude from A, then the area of

4ABC is equal to 1
2
|AD||BC|.

Exercise 4.2: Prove this proposition.

The Pythagorean Theorem, relating the lengths of the legs of a right triangle to the
length of the hypotenuse, is very well-known; you’ve probably seen it repeatedly since your
elementary school days, and know it quite well. The figure on the left below is sometimes
described as a proof of the Pythagorean Theorem, but in fact it is much closer to a geometric
statement of the theorem. To turn it into a proof requires constructing a number of additional
lines, and a fairly complex argument. On left is the figure for Euclid’s proof, sometimes called
“the bride’s chair”. We won’t give the argument here, but you might try to figure it out on
your own. The idea is to show that there are two pairs of congruent triangles, and the area
of each triangle in a pair is half of one of the smaller squares. The sum of the areas in the
pairs gives the area of the larger square.

Theorem 4.3 (The Pythagorean Theorem). Let the lengths of the legs of a right triangle be

a and b, and let the length of the hypoteneuse be c. Then a2 + b2 = c2.

There are many proofs of this theorem; we know of at least 40. Below we give one of the
simpler ones. It is necessary to use the Parallel Axiom (Axiom 8) axiom, either implicitly
or explicitly, in order to prove the Pythagorean Theorem; the theorem is false in both
spherical and hyperbolic geometry, which have a different version of Axiom 8. Surprisingly,
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the Pythagorean Theorem is equivalent to this axiom; that is, the Parallel Axiom can be
proven if we assume the Pythagorean Theorem first.

Proof. The proof is essentially the figure shown. We start with a right triangle with legs
of length a and b and hypotenuse of length c. Now we construct three more copies of this
triangle, arranging them to construct a square of side length a + b as in the figure. This
is indeed a square because all four sides are of length a + b, and each angle of the outer
quadrilateral is a right angle.

In addition, there is an inner quadrilateral formed whose sides
are the hypotenuse of each of the triangles. This quadrilateral
is certainly a rhombus, because each side is of length c. But it
is in fact a square, because each of its angles are right: at each
vertex there are three angles which sum to an angle of measure
π. Two of these are the acute angles in a right triangle, and so
the third must be of measure π/2.
The area of the outer square is (a+ b)2, the area of each of the
four triangles is 1

2
ab, and the area of the inner square is c2. Thus,

we have

(a+ b)2 = 4(
1

2
ab) + c2

c

b

a

a

c

b

From this, we readily see that a2 + b2 = c2. ¤

Exercise 4.3: Locate a different proof of the Pythagorean Theorem, and explain it in your
own words.

4.2. Similar triangles. We say that two triangles ABC and A′B′C ′ are similar if m∠A =
m∠A′, m∠B = m∠B′ and m∠C = m∠C ′.
Since the sum of the measures of a triangle is constant, if we are given two triangles,

4ABC and 4A′B′C ′, and we know that m∠A = m∠A′, and m∠B = m∠B ′, then the
triangles are similar.
If the triangles are similar, we write 4ABC ∼ 4A′B′C ′.

Proposition 4.4. Let D be some point on the side AB of 4ABC, and let k be the line

through D parallel to BC. Let E be the point where k crosses AC. Then 4ABC ∼ 4ADE.

Exercise 4.4: Prove this proposition.

We want to prove the very useful fact that the side lengths of similar triangles are pro-
portional. However, this is easier to do if we first prove it for right triangles, and then apply
this result to the general case.

Lemma 4.5 (Ratios for right triangles). Let 4ABC ∼ 4A′B′C ′, where C and C ′ are right

angles. Then

|AB|

|A′B′|
=
|BC|

|B′C ′|
=
|CA|

|C ′A′|
.

Proof. Without loss of generality, we can assume that |AB| > |A′B′|, and so we start with
4ABC, and construct another triangle which is congruent to 4A′B′C ′ inside it.
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Let k1 be a line parallel to BC that meets AB at the point
D where |AD| = |A′B′|. Denote the point where k1 meets AC
by E. Let k2 be the line through A parallel to BC, and let m2

be the line perpendicular to AC at B. Then, since AC and m2

are both perpendicular to BC, they are parallel. Let F be the
point of intersection of m2 with k2. Then AFBC is a rectangle.
Also, let G be the point of intersection of m2 and k1. Finally,
let m1 be the line perpendicular to k1 and k2 through D; denote
the point of intersection of m1 with BC by H and denote the
point of intersection of m1 with k2 by I.
Since the lines BC, k1 and k2 are all parallel, and the lines
AC, m1 and m2 are all parallel, |BH| = |GD| = |FI|, |HC| =
|DE| = |IA|, |BG| = |HD| = |CE|, and |GF | = |DI| = |EA|.
We give names to these quantities; we set a = |BH| = |GD| =
|FI|, b = |HC| = |DE| = |IA|, c = |BG| = |HD| = |CE| and
d = |GF | = |IE| = |EA|. We also set e = |BD| and f = |DA|.
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The line AB divides the rectangle AFBC into two congruent triangles. Since the areas
of 4BGD and 4BHD are equal, and the areas of 4IDA and 4EAD are equal, we obtain
that the areas of the two smaller rectangles are equal; that is, ad = bc.
Since we drew the line EG parallel to BC, we know that 4AED ∼ 4ACB. So, for this

case, our theorem, which we want to prove, says that

d

c+ d
=

b

a+ b
=

f

e+ f
.

To see that the first of these inequalities is true, notice that it holds when d(a+b) = b(c+d)
(by cross multiplying). But this holds since we have already established that ad = bc.
We check that the second equality is true by using the first equality together with the

Pythagorean theorem. That is, we write f 2 = b2+ d2 and (e+ f)2 = (a+ b)2+ (c+ d)2, and
then, as above, cross-multiply and use the two facts that we have already proven; namely
that ad = bc, and that

d2

(c+ d)2
=

b2

(a+ b)2
.

Now since 4ABC ∼ 4A′B′C ′, we have m∠A = m∠A′ and m∠B = m∠B′. Since k1 is
parallel to BC, m∠B = m∠EDA (using alternate interior angles and vertical angles). Since
|AD| = |A′B′| by construction, 4A′B′C ′ ∼= 4ADE via ASA. Using the above, we conclude
that

|AB|

|A′B′|
=
|BC|

|B′C ′|
=
|CA|

|C ′A′|

as desired. ¤

Now that we have shown the desired property for right triangles, we can use that result
to show it for arbitrary similar triangles.

Theorem 4.6 (Ratios for triangles). Let 4ABC ∼ 4A′B′C ′. Then

|AB|

|A′B′|
=
|BC|

|B′C ′|
=
|CA|

|C ′A′|
.
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Proof. As above, we can assume without loss of generality that |AB| > |A′B′|. Find the
point D on AB so that |AD| = |A′B′|, and draw the line DE parallel to BC. As above,
using alternate interior angles, we see that m∠ADE = m∠ABC and m∠AED = m∠ACB.
Hence 4ADE ∼= 4A′B′C ′, and so it suffices to show that

|AB|

|AD|
=
|BC|

|DE|
=
|CA|

|EA|
.

Let k = AF be the altitude from A, and let G be the point of intersection of k with the
line DE. Then ADF and ADG are similar right triangles, and ACF and AEG are similar
right triangles. Hence the proportion theorem for right triangles yields

|AD|

|AB|
=
|AG|

|AF |
=
|AE|

|AC|
.

That |DE|
|BC|

= |AG|
|AF |

follows easily from the Lemma above. ¤

Exercise 4.5: Prove that the lines joining the midpoints of the sides of a triangle divide
the triangle into four congruent triangles.

4.3. Basic trigonometric functions. Let4ABC be such that ∠C is a right angle. Let
a = |BC|, b = |AC| and c = |AB|. Also, let θ = m∠A. Then, by the proportion theorem
for right triangles, the ratios a/b, a/c, and b/c all depend only on the measure of the angle
θ.
In what follows, we will deliberately confuse an angle with its measure; i.e., we will not

distinguish between ∠A and m∠A. It should always be clear from the context which is
meant.
For 0 < θ < π/2, we define the trigonometric functions as

ratios of lengths in right triangles:

sin θ = a/c
cos θ = b/c
tan θ = a/b = sin θ/ cos θ
cot θ = b/a = 1/ tan θ = cos θ/ sin θ
sec θ = c/b = 1/ cos θ
csc θ = c/a = 1/ sin θ

θ
C

B

A b

c a

We note that it is almost immediate from the definition that

sin(π/2− θ) = cos θ and cos(π/2− θ) = sin θ.

In order to extend the definitions to all values of θ, first we set

sin 0 = 0 and sin
π

2
= 1

which is reasonable since the sine is small for small angles, and close to 1 for angles close to
right angles. Now to define obtuse angles,

sin(π − α) = sin(α) for 0 ≤ α ≤
π

2

and to get negative values, we let

sin(−θ) = − sin(θ).
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Finally, since an angle of 2π represents a full turn, we say that sin(2π + α) = sinα. Putting
these together defines the sine for all values.
We can then use the fact that sin(π/2 − θ) = cos θ and tan θ = sin θ/ cos θ to extend the

definitions of the other functions to all real numbers (except those where we would need to
divide by 0, such as for tan π

2
.

Exercise 4.6: Prove that, for any number θ,

sin2 θ + cos2 θ = 1.

Theorem 4.7 (Law of Sines). Let ABC be a triangle, with sides of length a = |BC|,
b = |AC| and c = |AB|. Then

sinA

a
=
sinB

b
=
sinC

c
.

Proof. We first assume that C is a right angle, and, that c = 1. Then sinA = a and sinB = b,
so the result holds in this case. Using the theorem of proportions for right triangles, our
result holds for all right triangles.

Now let ABC be an arbitrary triangle, where B and C are acute angles (i.e.,
their measures are less than π/2), and let AD be the altitude from A. Then

sinB = |AD|
c
, and sinC = |AD|

b
. Hence

sinB

b
=
|AD|

bc
=
sinC

c
. B C

A

D

c b

We next take up the case that angle B is an obtuse angle. We again drop
the altitude AD from A to the line BC, but now this altitude lies outside
4ABC. Note that B lies between D and C. As above, using our known facts
about right triangles, we obtain, |AD| = |AC| sinC = |AB| sinB, from which
the desired result follows.

A

D

b
c

CB

If angle C is obtuse, repeat the above argument, exchanging B and C.
The other equality follows by looking at the altitude from B and/or C. ¤

Theorem 4.8 (Law of Cosines). Let ABC be a triangle, where none of the angles are right

angles, with sides of length a = |BC|, b = |AC| and c = |AB|. Then

c2 = a2 + b2 − 2ab cosC.

Proof. As above, we need to worry about the possibility that ∠C is obtuse. We first take
up the case that it is acute. It could be that either ∠A or ∠B is obtuse, we note that our
hypotheses, and the formula we wish to prove, remain unchanged if we interchange A and
B; we assume that ∠B is not obtuse. It then follows that if AD is the altitute from A, then
D lies between A and B. Let d = |AD|. Let a1 = |BD|, and let a2 = |DC|. Then, by
the Pythagorean theorem, c2 = a2

1 + d2. Again by the Pythagorean theorem, d = b2 − a2
2.

Substituting, we obtain

c2 = a2
1+d

2 = a2
1+b

2−a2
2 = (a1+a2)

2+b2−2a1a2−2a
2
2 = a2+b2−2aa2 = a2+b2−2ab cosC,

where, in the last equality, we have used the fact that cosC = a2/b.
We next take up the case that ∠C is obtuse. In this case, the endpoint of the altitude

AD is such that C lies between B and D. Similar to the above, we set a1 = |CD|. Then the
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Pythorean theorem yields the following.

(a+ a1)
2 + d2 = c2, d2 + a2

1 = b2.

Substituting, we obtain,

c2 = (a+ a1)
2 + b2 − a2

1 = a2 + b2 + 2aa1.

We note that cos(π − C) = a1/b. Hence, upon setting cosC = − cos(π − C), we obtain,

c2 = a2 + b2 +−2ab cos(π − C) = a2 + b2 − 2ab cosC.

¤

4.4. Other important trigonometric formulae. We will not prove the addition for-
mulae for sines and cosines; however, since they are important, we will state them.

Theorem 4.9.

sin(α + β) = sinα cos β + sin β cosα.

Theorem 4.10.

cos(α+ β) = cosα cos β − sinα sin β.

One can easily prove these theorems by constructing 4ABC, where m∠A = α + β, and
the altitude from A divides this triangle into two triangles, 4ABD and 4ADC, in such
a way that m∠BAD = α and m∠DAC = β. Then, using the definitions of the sine and
cosine for right triangles, the addition formula for the sine follows from the law of sines, and
the addition formula for the cosine follows from the Pythagorean theorem and the law of
cosines.

We can use the laws of sines and cosines to obtain information about triangles.

Exercise 4.7: This exercise tells you how to compute the other three pieces of information
about a triangle if you are given SAS.

(a) Assume we are given the lengths a and b of triangle ABC, and we are given ∠C (that
is, we are given sinC and/or cosC). Explain in words how we would find the length
of the other side, and the other two angles. (Hint: Use the above theorems.)

(b) Find explicit formulas for these three pieces of information in explicit terms; that is,
find a formula for c, and find formulas for the other two angles, in terms of a, b and
either sinC or cosC.

Exercise 4.8: Repeat the above for the congruence relation ASA. That is, if you are given
the sines and or cosines of two of the angles, and given the length of the included side, find
the sine or cosine of the other angle and find the lengths of the other two sides.

Exercise 4.9: Repeat the above exercise for AAS.

Exercise 4.10: Repeat the above exercise for SSS.


