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1. Introduction

1.1. Physical vs. Ideal. What is a triangle? Is a triangle a physical object made up of
3 straight pieces of wood or metal or somesuch, joined at the corners, or is it an ideal object
consisting of lines that have no width lying in a plane that has no thickness?

1.2. The idea of constructibility. Historically, all lengths and angles are somehow
constructible. That is, they are abstract objects that, in some sense are capable of being
realized as physical objects. We will take a somewhat different point of view; we will assume
familiarity with real numbers, and with the correspondence between real numbers and points
on a line.

1.3. Basic objects. The plane, lines, points, length and distance, angle measure.

1.4. Basic concepts.

• Points lie on lines.
• If two distinct points lie on a line, then the length of the line segment between these
points is well defined.

• A point separates a line into two half-lines.
• Two distinct points on the same line separate it into a line segment, which has a
length (the length is a positive number), and two half-lines.

• A line separates the plane into two half-planes, which are regions (in modern terms,
a region is a connected open subset of the plane).

• Two distinct lines either meet at a point, or are disjoint, in which case they are
parallel.

1.5. Basic axioms. These are the first few; a few more will follow. The reader should be
aware that the numbering of the axioms, as well as the theorems, propositions, etc. is unique
to these notes. It is also possible to have the same notion of planar geometry with a slightly
different collection of axioms, but these are what we shall use.

Axiom 1. Two distinct lines intersect in at most one point.

Axiom 2. Any two distinct points lie on a line.

Axiom 3. If two lines intersect in a point, they separate the plane into 4 regions, called
sectors, and they define an angle in each of these sectors; the sum of the measures of any
two adjacent angles is π.

Axiom 4. If two lines do not intersect, they divide the plane into three regions, with exactly
one of them, the one between the two lines, having both lines on its boundary.

Exercise 1.1: Using the above axioms, show that given any two distinct points, there is
exactly one line that contains them both.

1.6. Basic notations. If A and B are distinct points, then the (unique) line on which
they lie is denoted by AB. The line segment between A and B is also denoted by AB; this
should cause no confusion. The length of the line segment AB is denoted by |AB|.
If AB and AC are distinct lines or line segments, the angle between them is denoted by

∠BAC, and its measure is denoted by m∠BAC. We may use ∠A to denote an angle which
has the point A at its vertex, if it is clear from the context which angle is being referred to.
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It is also not unusual to use Greek letters such as α, β, θ, ϕ, etc. to denote both angles and
their measures.

Theorem 1.1 (Vertical angles). Vertical angles are equal. That is, if two distinct lines
intersect at a point, the measure of the angles of any two non-adjacent sectors is equal.

Exercise 1.2: Prove Thm. 1.1. You may use any of the axioms above, along with logical
axioms and results for real numbers (since angle measure is a real number).

1.7. Basic constructions. (more will follow)

• Any line segment can be extended in either direction, or in both directions.
• If |AB| < |CD|, then there is a point E on the line CD, where E lies between C and
D, so that |AB| = |CE| (see also Axiom ??).

• If A and B are points on the line k, and we are given an angle ∠CDE, where
m∠CDE 6= π, then we can construct points F and G, one on each side of the line
k = AB, so that m∠BAF = m∠BAG = m∠CDE. (see also Axiom ??).
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2. Triangles and congruence of triangles

2.1. Basic measurements. Three distinct lines, a, b and c, no two of which are parallel,
form a triangle. That is, they divide the plane into some number of regions; exactly one of
them, the triangle, is bounded, and has segments of all three lines on its boundary.
The triangle with vertices A,B,C is denoted by4ABC, where A is the point of intersection

of the lines b and c; B is the point of intersection of the lines a and c; and C is the point
of intersection of the lines a and b. These points of intersection divide each of the lines into
two unbounded half-lines and one bounded line segment, called a side of the triangle.
The triangle, 4ABC, defines 6 numbers, the angle measures (also called the angles) at

the vertices A, B and C, and the lengths of the sides, which are the line segments BC, AC
and AB.
The angle measure at for example the vertex A is denoted by m∠A, or m∠BAC.

2.2. Historical note. The use of the phrase “measure of an angle” is relatively modern.
Up to about 50 years ago, the measure of the angle at A was simply denoted by A or ∠A, and
it was left to the reader to distinguish between the angle and its measure. When convenient,
we will follow this convention, and use the same notation for an angle and its measure.

2.3. More on measurements. We will always give angle measures in radians, so, if A B
and C all lie on a line, with B between A and C, then m∠ABC = π.
We denote the length of the side AB, for example, by |AB|. Until modern times, the side

and its length were denoted by the same symbol, and the reader had to figure out which is
which from the context. As with angles, when convenient, we will also use the same notation
for a line segment and its length.
The pair of lines, a and b, for example, determines two angles; the question of which of

these angles is determined by the triangle can be stated in words with difficulty; we will
leave this as visually obvious.

2.4. Congruence. Two triangles,4ABC and4A′B′C ′, are congruent if the corresponding
angles have equal measures, and the corresponding sides have equal lengths. That is, the
triangles, 4ABC and 4A′B′C ′ are congruent if m∠A = m∠A′; m∠B = m∠B′; m∠C =
m∠C ′; |AB| = |A′B′|; |AC| = |A′C ′|; and |BC| = |B ′C ′|. In this case, we write 4ABC ∼=
4A′B′C ′.
For physical triangles, two triangles are congruent if they exactly match if you put one on

top of the other. Another way of saying this, for ideal triangles, is that there is an isometry
of the plane (a composition of rotation, translation and reflection) that maps one exactly
onto the other.

Exercise 2.1: Show that congruence of triangles is an equivalence relation.

2.5. Important remark about notation. It is essentially obvious that congruence of
triangles is an equivalence relation. However, the statement that 4ABC ∼= 4A′B′C ′ says
nothing about whether 4BCA is or is not congruent to 4A′B′C ′. More precisely, the
statement 4ABC ∼= 4A′B′C ′ not only tells you that these two triangles are congruent, but
also tells you that m∠A = m∠A′, |AB| = |A′B′|, etc.
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2.6. The axiom for congruence.

Axiom 5 (ASA). If m∠A = m∠A′, m∠B = m∠B′ and |AB| = |A′B′|, then 4ABC ∼=
4A′B′C ′.

It is common to refer to the above angle as “Angle-Side-Angle” or ASA.
For physical triangles this is essentially obvious. If you know the length of a side, and you

know the two angles, then the lines on which the other sides lie are determined, so the third
vertex is also determined.

2.7. Exercises. A physical triangle is determined by 6 pieces of information, the 3 lengths
and the 3 angles. There are 6 possible statements concerning 3 pieces of information. Con-
vince yourself that AAA and SSA are false, while AAS, ASA, SAS and SSS are true. (There is
nothing here for you to hand in, but you need this information for the next two questions.)
Remark: One of these, AAS, is not obvious; in fact it is false in spherical geometry.
In the following few exercises, when you are asked to prove something you may assume

that AAS, ASA, SAS and SSS are true. One other fact that you may use is Thm. 3.4: the
sum of the angles of a triangle is π. Note that this is only for these exercises; in general we
cannot assume things we have not proven or taken as an axiom, because we may wind up
applying circular reasoning (that is, giving a proof that something is true which implicitly
assumes it was true to begin with.) But the main point of this exercise is to get you thinking
about how geometry works, so we can relax our restrictions a little.

Exercise 2.2: Is it true that no 2 pieces of information suffice to determine a triangle? That
is, can you find two pieces of information so that if you have any two triangles for which
these two measurements are the same, the triangles must necessarily be congruent. Prove
your answer.

Exercise 2.3: What about 4 pieces of information; i.e., do any four pieces of information
suffice for congruence of triangles? Prove your answer.

A quadrilateral is a region bounded by four line segments; that is, it is a four-sided figure.
The quadrilateral with vertices, A, B, C and D, in this order, is determined by the four line
segments connecting A and B, B and C, C and D, and connecting D and A. For ABCD
to form a quadrilateral, these segments must not intersect except at the verticies.
A quadrilateral defines 8 pieces of information: the lengths of the four sides, and the

measures of the four angles. Two quadrilaterals are congruent if these 8 pieces of information
agree.
What is the minimal number of pieces of information one needs about two quadrilaterals

to prove that they are congruent? (No response needed here, but you need the answer for
the next question.)

Exercise 2.4: State and prove one congruence theorem for quadrilaterals, where the hy-
pothesis consists of the minimal number of pieces of information.

2.8. Monotonicity of lengths and angles. Here are two more axioms we shall need.
Essentially, they say that for every real number, a segment can be scaled to that length, and
that angles can be subdivided into angles of any measurement between 0 and π.

Axiom 6 (Ruler Axiom). If A B and C are distinct points on a line, in that order, then
|AB| < |AC|. Further, for every positive real number r < |AC|, there is a point B between
A and C so that |AB| = r.
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Axiom 7 (Protractor Axiom). If k is a line, and A is a point on k, then, for every number
α with 0 < α < π, there is a line m through A so that the angles formed by k and m have
measures α and π−α. Further, if 0 < β < α < π, then there is a line n passing through the
sector of angle α formed by k and m, so that n and k form an angle of measure β.

Theorem 2.1 (SAS). If 4ABC and 4A′B′C ′ are such that |AB| = |A′B′|, m∠ABC =
m∠A′B′C ′, and |BC| = |B ′C ′|, then they are congruent.

Proof. Suppose we are given two triangles 4ABC and 4A′B′C ′ as in the statement. If
m∠BCA = m∠B ′C ′A′, then we would be done (by ASA).

A

B

C

D

A

B

C’

’

’

So let us consider the case where they are different, and arrive
at a contradiction. We may assume that m∠BCA > m∠B ′C ′A′

(if not, just exchange the names on the triangles).
Apply the second part of Axiom 7 to find a line passing through
the point C and some point D lying between A and B, so that
m∠BCD = m∠B′C ′A′.
By ASA,4BCD ∼= 4B′C ′A′. Therefore |DB| = |A′B′|. But we
are given that |A′B′| = |AB|. Therefore, |DB| = |AB|. Since D
lies on the line determined by A and B, and lies between them,
this contradicts Axiom 6.

¤

2.9. Isosceles triangles. A triangle is isosceles if two of its sides have equal length. The
two sides of equal length are called legs; the point where the two legs meet is called the apex

of the triangle; the other two angles are called the base angles of the triangle; and the third
side is called the base.
While an isosceles triangle is defined to be one with two sides of equal length, the next

theorem tells us that is equivalent to having two angles of equal measure.

Theorem 2.2 (Base angles equal). If4ABC is isosceles, with base BC, thenm∠B = m∠C.
Conversely, if 4ABC has m∠B = m∠C, then it is isosceles, with base BC.

Exercise 2.5: Prove Theorem 2.2 by showing that 4ABC is congruent to its reflection
4ACB. Note that there are two parts to the theorem, and so you need to give essentially
two separate arguments.

2.10. Congruence via SSS.

Theorem 2.3 (SSS). If 4ABC and 4A′B′C ′ are such that |AB| = |A′B′|, |AC| = |A′C ′|
and |BC| = |B ′C ′|, then 4ABC ∼= 4A′B′C ′.

Proof. If the two triangles were not congruent, then one of the angles of 4ABC would have
measure different from the measure of the corresponding angle of 4A′B′C ′. If necessary,
relabel the triangles so that ∠A and ∠A′ are two corresponding angles which differ, with
m∠A′ < m∠A.
We find a point D and construct the line AD so that m∠DAB = m∠A′, and |AD| =

|A′C ′|. (That this can be done follows from Axioms 6 and 7.) It is unclear where the point
D lies: it could lie inside triangle ABC; it could lie on the line BC between B and C; or it
could lie on the other side of the line BC. We need to take up these three cases separately.
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Exercise 2.6: Suppose the point D lies on the line BC. Explain why this yields an imme-
diate contradiction.

For both of the remaining cases, we draw the lines BD and CD. We observe that, by SAS,
4ABD ∼= 4A′B′C ′. It follows that |BD| = |B ′C ′| = |BC| and that |AD| = |A′C ′| = |AC|.
Hence 4BDC is isosceles, with base DC, and 4ADC is isosceles with base CD. Since
the base angles of an isosceles triangle have equal measure, m∠BDC = m∠BCD and
m∠ADC = m∠ACD.

B

A C

D

First, we take up the case that D lies outside 4ABC; that is,
D lies on the other side of the line BC from A.

Exercise 2.7: Finish this case of the proof, first by showing
that m∠ADC < m∠BDC and m∠BCD < m∠ACD. Then
use the isosceles triangles to arrive at the contradiction that
m∠ADC < m∠ADC.

We now consider the case where D lies inside 4ABC. Ex-
tend the line BC to some point E. Observe that m∠BCD +
m∠DCA+m∠ACE = π, from which it follows that m∠BCD+
m∠DCA < π. Next, extend the line BD past D to some point
F . Also extend the line AD past the point D to some point G,
and extend the line CD past the point D to some point H.

Exercise 2.8: Finish this case of the proof by explaining why
π < m∠BDC +m∠CDA and m∠BCD +m∠DCA < π, and
then show that this leads to the contradiction π < π.

B

A

H

F

D

C

E

G

¤

2.11. Inequalities for general triangles.

Theorem 2.4 (exterior angle inequality). Consider the triangle
4ABC. Let D be some point on the line BC, where C lies
between B and D. Then

(i) m∠ACD > m∠A.
(ii) m∠ACD > m∠B. DCB

A

Proof. We first prove part (i). Let E be the midpoint of the line segment AC; that is, E lies
on the line AC, between A and C, and |AE| = |EC|. Draw the line BE and extend it past
E to the point F , so that E is the midpoint of BF . Also draw the line CF .

Exercise 2.9: Finish the proof of part (i). Hint: First show
that 4AEB ∼= 4CEF (Thm. 1.1 may be useful.) Use that
to compare m∠A and m∠ECF , and conclude that m∠ACD >
m∠ACF = m∠A. DCB

A

E

F
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DB

A

E

F

G

C

For part (ii), we choose E to be the midpoint of the line BC,
and extend AE beyond E to F , so that |AE| = |EF |. Also,
extend the line Now extend the line FC beyond C to some
point G.

Exercise 2.10: Finish the proof of part (ii). First show that
4AEB ∼= 4FEC, and then compare m∠FCE, m∠DCG,
m∠DCA, and m∠B.

¤

The next theorem says that in a triangle, if one angle is bigger than another, the side
opposite the bigger angle must be longer than the one opposite the smaller angle. This is
generalizes the fact that the base angles of isosceles triangles are equal (Thm. 2.2).

Theorem 2.5. In 4ABC, if m∠A > m∠B, then we must have |BC| > |AC|.

Proof. Assume not. Then either |BC| = |AC| or |BC| < |AC|.

Exercise 2.11: Show that if |BC| = |AC|, the assumption m∠A > m∠B is contradicted.

Exercise 2.12: Now assume |BC| < |AC|, find the point D on
AC so that |BC| = |CD|, and draw the line BD. Finish the
proof in this case. Hint: Use Thm. 2.4 and the fact that |BD| =
|CD| to conclude that m∠CDB > m∠A. Now observe that
m∠DBC < m∠ABC. Explain why this gives the contradiction
m∠CBD < ∠CBD. CB

A
D

¤

The converse of the previous theorem is also true: opposite a long side, there must be a
big angle.

Theorem 2.6. In 4ABC, if |BC| > |AC|, then m∠A > m∠B.

Proof. Assume not. If m∠A = m∠B, then 4ABC is isosceles, with apex at C, so |BC| =
|AC|, which contradicts our assumption.
If m∠A < m∠B, then, by the previous theorem, |BC| < |AC|, which again contradicts

our assumption. ¤

The following theorem doesn’t quite say that a straight line is the shortest distance between
two points, but it says something along these lines. This result is used throughout much of
mathematics, and is referred to as “the triangle inequality”.
Theorem 2.7 (the triangle inequality). In 4ABC, we have

|AB|+ |BC| > |AC|

.

Exercise 2.13: Prove the triangle inequality: First extend AB to a
point D so that |BD| = |BC|, then form the isosceles triangle 4BDC.
Use this triangle and Thm 2.2 to show that m∠ADC < m∠ACD.
Conclude that |AD| > |AC| by using another theorem from this section.
Then show that |AB|+ |BC| > |AC|.

B C

D

A
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2.12. Congruence via AAS.

Theorem 2.8 (AAS). Suppose we are given triangles ABC and A′B′C ′, where m∠A =
m∠A′, m∠B = m∠B′, and |BC| = |B ′C ′|. Then 4ABC ∼= 4A′B′C ′.

Proof. We first observe that, by either SAS or ASA, if |AB| = |A′B′|, then 4ABC ∼=
4A′B′C ′. Hence we can assume that |AB| 6= |A′B′|, from which it follows that either
|AB| < |A′B′| or |AB| > |A′B′|. We can assume without loss of generality that |AB| > |A′B′|
(that is, if we had that |AB| < |A′B′|, then we would interchange the labelling of the two
triangles).

Now find the point D between A and B, so that |BD| =
|A′B′|. Observe that, by SAS, 4DBC ∼= 4A′B′C ′. Hence
m∠BDC = m∠A′ = m∠A. This contradicts that fact that,
since ∠BDC is an exterior angle for 4ADC, we must have that
m∠BDC > m∠A. C

A

B

D

¤

This concludes the generalities concerning congruence of triangles. We now know the four
congruence theorems, ASA, SAS, SSS and AAS. We also know that the other two possibilities,
SSA and AAA, are not valid. It follows that, for example, if we are given the lengths of all
three sides of a triangle, then the measures of all three angles are determined. However, we
do not as yet have any means of computing the measures of these angles in terms of the
lengths of the sides.

2.13. Perpendicularity and orthogonality. Two lines intersecting at a point A are
perpendicular or orthogonal if all four angles at A are equal. In this case, each of the angles
has measure π/2. These angles are called right angles. It is standard in mathematics to use
the words perpendicular and orthogonal interchangeably.

Basic Construction. Given a line k, and any point A, there is a line through A perpen-
dicular to k.

Exercise 2.14: Prove that the line through A perpendicular to k is unique. (Note that A
may or may not lie on k.)

In any triangle, there are three special lines from each vertex. In 4ABC, the altitude from
A is perpendicular to BC; the median from A bisects BC (that is, it crosses BC at a point
D so that |BD| = |DC|); and the angle bisector bisects ∠A (that is, if E is the point where
the angle bisector meets BC, then m∠BAE = m∠EAC).

Theorem 2.9. If A is the apex of the isosceles triangle ABC, and AD is the altitude, then
AD is also the median, and is also the angle bisector, from A.

Exercise 2.15: Prove this theorem. (Hint: Construct the altitude and apply AAS to the
pair of resulting triangles.)

Theorem 2.10. In an isosceles triangle, the three altitudes meet at a point.
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Proof. Let A be the apex of the isosceles 4ABC, and let AD be the
altitude, which is also the median and the angle bisector. Similarly, let E
be the endpoint on AC of the altitude from B, and let F be the endpoint
on AB of the altitude from C. Let G be the point of intersection of AD
with BE, and let H be the point of intersection of AD with CF . We need
to prove that G = H.
By AAS, 4FAC ∼= 4EAB. Hence |AF | = |AE|. Since AD is also the
angle bisector, by ASA, 4AFH ∼= 4AEG. Hence |AH| = |AG|, from
which it follows that G = H. ¤

C
D

B

E
F

G

A

H

Exercise 2.16: Prove that the three angle bisectors in an isosceles triangle meet at a point.

Exercise 2.17: Prove that the three medians in an isosceles triangle meet at a point.
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3. The parallel axiom

Axiom 8 (Parallel Axiom). Given a line k, and a point A not on k, there is exactly one
line m passing through A and parallel to k.

We remark that the point of the axiom is not the existence of the parallel, but the unique-
ness. We will see below that existence actually follows from what we already know.
It is sometimes convenient to think of a line as being parallel to itself, so we make the

following formal definition. Two lines are not parallel if they have exactly one point in
common; otherwise they are parallel.

Theorem 3.1. In the set of all lines in the plane, the relation of being parallel is an equiv-
alence relation.

Proof. First, since a line has infinitely many points in common with itself, it is parallel to
itself; hence the relation is reflexive (this is the point of the strange definition).
Second, the definition is obviously symmetric; it is defined in terms of the two lines; not

one with relation to the other.
Third, suppose k is parallel to m, and m is parallel to n. There is obviously nothing

further to prove unless the three lines are distinct. Assume that k and n are not parallel.
Since two lines are either equal, parallel, or have exactly one point in common, we must have
that k and n have a point in common. But this contradicts Axiom 8. ¤

3.1. Alternate interior angles. We will meet the following situation some number of
times. We are given two lines k1 and k2, and a third line m, where m crosses k1 at A1 and m
crosses k2 at A2. Choose a point B1 6= A1 on k1, and choose a point B2 6= A2 on k2, where
B1 and B2 lie on opposite sides of the line m. Then ∠B1A1A2 and ∠B2A2A1 are referred to
as alternate interior angles.
In any given situation, there are two distinct pairs of alternate

interior angles. That is, let C1 be some point on k1, where B1

and C1 lie on opposite sides of m, and let C2 be some point on
k2, where C2 and B2 lie on opposite sides of m. Then one could
also regard ∠C1A1A2 and ∠C2A2A1 as being alternate interior
angles. However, observe that m∠B1A1A2 + m∠C1A1A2 = π
and m∠B2A2A1 +m∠C2A2A1 = π. It follows that one pair of
alternate interior angles are equal if and only if the other pair
of alternate interior angles are equal.

A

A1 B 1

C

C 1
k1

k
B

2

222

m

Proposition 3.2. If the alternate interior angles are equal, then the lines k1 and k2 are
parallel.

Proof. Suppose not. Then the lines k1 and k2 meet at some point D. If necessary, we
interchange the roles of the Bi and the Ci so that ∠B1A1A2 is an exterior angle of 4A1A2D.
Then D and B2 lie on the same side of m, so ∠DA2A1 = ∠B2A2A1. By the exterior angle
inequality,

m∠B1A1A2 > m∠A1A2D = m∠B2A2A1 = m∠B1A1A2,

so we have reached a contradiction. ¤
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3.2. Existence of parallel lines. Let k1 be a line, and let A2 be a point not on k1.
Pick some point A1 on k1 and draw the line m through A1 and A2. By Axiom 7, we can
find a line k2 through A2 so that the alternate interior angles are equal. Hence we can find
a line through A2 parallel to k1.

Theorem 3.3 (alternate interior angles equal). Two lines k1 and k2 are parallel if and only
if the alternate interior angles are equal.

Proof. To prove the forward direction, construct the line k3 through A2, where there is a
point B3 on k3, with B3 and B2 on the same side of m, so that m∠B3A2A1 = m∠B1A1A2.
Then, by Prop. 3.2, k3 is a line through A2 parallel to k1. Axiom 8 implies k3 = k1. Hence
m∠B3A2A1 = m∠B2A2A1, and the desired conclusion follows.
The other direction is just Prop. 3.2, restated as part of this theorem for convenience. ¤

3.3. The sum of the angles of a triangle.

Theorem 3.4. The sum of the measures of the angles of a triangle is equal to π.

Proof. Consider 4ABC, and let m be the line passing through A and
parallel to BC. Let D and E be two points on m, on opposite sides of
A, where D and C lie on opposite sides of the line AB. Then B and E
lie on opposite sides of AC.

Exercise 3.1: Use alternate interior angles to complete the proof of
this theorem.

¤

D E

B C

A

A quadrilateral is a region bounded by four line segments, so it has four verticies on its
boundary.

Corollary 3.5. The sum of the measures of the angles of a quadrilateral is 2π.

Proof. Cut the triangle into two triangles, and do the obvious computation. ¤

A rectangle is a quadrilateral in which all four angles are right angles.

Theorem 3.6. If ABCD is a rectangle, then AB is parallel to CD, and |AB| = |CD|.
Similarly, BC is parallel to AD and |BC| = |AD|.

Exercise 3.2: Prove this theorem.

i. Prove that opposite pairs of sides are parallel.
ii. Now cut the rectangle into two triangles; prove that these two triangles are congruent.
Conclude that opposite sides of the rectangle have equal length.

Somewhat more generally, a parallelogram is a quadrilateral ABCD
in which opposite sides are parallel; that is, AB is parallel to CD, and
AD is parallel to BC.
A rectangle with all four sides of equal length is a square; a parallelo-
gram with all four sides of equal length is a rhombus.

A

B C

D

Theorem 3.7. Let ABCD be a parallelogram. Then m∠A = m∠C; m∠B = m∠D; |AB| =
|CD|; and |BC| = |AD|.

Exercise 3.3: Prove this theorem. (Hint: Draw a diagonal.)
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Theorem 3.8. If ABCD is a quadrilateral in which |AB| = |CD| and |AD| = |BC|, then
ABCD is a parallelogram.

Exercise 3.4: Prove this theorem.

Theorem 3.9. Let ABCD be a parallelogram with diagonals of equal length (that is, |AC| =
|BD|). Then ABCD is a rectangle.

Exercise 3.5: Prove this theorem.
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4. Lengths, areas and proportions

We now turn to a brief discussion of area. Rather than carefully developing this theory,
we shall begin with some “obvious” facts, such as

(i) The area of a rectangle which has side lengths a and b is ab.
(ii) Congruent figures have equal area
(iii) The area of a region obtained as a union of two non-overlapping regions is the sum

of the areas of these regions.

4.1. Right triangles. A right triangle is one which contains a right angle. The two sides
emanating from the right angle are called the legs of the triangle; the third side, opposite
the right angle is the hypoteneuse.

Proposition 4.1. If the legs of a right triangle have lengths a and b, then the area of the
triangle is 1

2
ab.

Exercise 4.1: Prove this proposition by constructing an appropriate rectangle.

Proposition 4.2. In 4ABC, if D is the endpoint of the altitude from A, then the area of
4ABC is equal to 1

2
|AD||BC|.

Exercise 4.2: Prove this proposition.

The Pythagorean Theorem, relating the lengths of the legs of a right triangle to the
length of the hypotenuse, is very well-known; you’ve probably seen it repeatedly since your
elementary school days, and know it quite well. The figure on the left below is sometimes
described as a proof of the Pythagorean Theorem, but in fact it is much closer to a geometric
statement of the theorem. To turn it into a proof requires constructing a number of additional
lines, and a fairly complex argument. On left is the figure for Euclid’s proof, sometimes called
“the bride’s chair”. We won’t give the argument here, but you might try to figure it out on
your own. The idea is to show that there are two pairs of congruent triangles, and the area
of each triangle in a pair is half of one of the smaller squares. The sum of the areas in the
pairs gives the area of the larger square.

Theorem 4.3 (The Pythagorean Theorem). Let the lengths of the legs of a right triangle be
a and b, and let the length of the hypoteneuse be c. Then a2 + b2 = c2.

There are many proofs of this theorem; we know of at least 40. Below we give one of the
simpler ones. It is necessary to use the Parallel Axiom (Axiom 8) axiom, either implicitly
or explicitly, in order to prove the Pythagorean Theorem; the theorem is false in both
spherical and hyperbolic geometry, which have a different version of Axiom 8. Surprisingly,
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the Pythagorean Theorem is equivalent to this axiom; that is, the Parallel Axiom can be
proven if we assume the Pythagorean Theorem first.

Proof. The proof is essentially the figure shown. We start with a right triangle with legs
of length a and b and hypotenuse of length c. Now we construct three more copies of this
triangle, arranging them to construct a square of side length a + b as in the figure. This
is indeed a square because all four sides are of length a + b, and each angle of the outer
quadrilateral is a right angle.

In addition, there is an inner quadrilateral formed whose sides
are the hypotenuse of each of the triangles. This quadrilateral
is certainly a rhombus, because each side is of length c. But it
is in fact a square, because each of its angles are right: at each
vertex there are three angles which sum to an angle of measure
π. Two of these are the acute angles in a right triangle, and so
the third must be of measure π/2.
The area of the outer square is (a+ b)2, the area of each of the
four triangles is 1

2
ab, and the area of the inner square is c2. Thus,

we have

(a+ b)2 = 4(
1

2
ab) + c2

c

b

a

a

c

b

From this, we readily see that a2 + b2 = c2. ¤

Exercise 4.3: Locate a different proof of the Pythagorean Theorem, and explain it in your
own words.

4.2. Similar triangles. We say that two triangles ABC and A′B′C ′ are similar if m∠A =
m∠A′, m∠B = m∠B′ and m∠C = m∠C ′.
Since the sum of the measures of a triangle is constant, if we are given two triangles,

4ABC and 4A′B′C ′, and we know that m∠A = m∠A′, and m∠B = m∠B ′, then the
triangles are similar.
If the triangles are similar, we write 4ABC ∼ 4A′B′C ′.

Proposition 4.4. Let D be some point on the side AB of 4ABC, and let k be the line
through D parallel to BC. Let E be the point where k crosses AC. Then 4ABC ∼ 4ADE.

Exercise 4.4: Prove this proposition.

We want to prove the very useful fact that the side lengths of similar triangles are pro-
portional. However, this is easier to do if we first prove it for right triangles, and then apply
this result to the general case.

Lemma 4.5 (Ratios for right triangles). Let 4ABC ∼ 4A′B′C ′, where C and C ′ are right
angles. Then

|AB|

|A′B′|
=
|BC|

|B′C ′|
=
|CA|

|C ′A′|
.

Proof. Without loss of generality, we can assume that |AB| > |A′B′|, and so we start with
4ABC, and construct another triangle which is congruent to 4A′B′C ′ inside it.
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Let k1 be a line parallel to BC that meets AB at the point
D where |AD| = |A′B′|. Denote the point where k1 meets AC
by E. Let k2 be the line through A parallel to BC, and let m2

be the line perpendicular to AC at B. Then, since AC and m2

are both perpendicular to BC, they are parallel. Let F be the
point of intersection of m2 with k2. Then AFBC is a rectangle.
Also, let G be the point of intersection of m2 and k1. Finally,
let m1 be the line perpendicular to k1 and k2 through D; denote
the point of intersection of m1 with BC by H and denote the
point of intersection of m1 with k2 by I.
Since the lines BC, k1 and k2 are all parallel, and the lines
AC, m1 and m2 are all parallel, |BH| = |GD| = |FI|, |HC| =
|DE| = |IA|, |BG| = |HD| = |CE|, and |GF | = |DI| = |EA|.
We give names to these quantities; we set a = |BH| = |GD| =
|FI|, b = |HC| = |DE| = |IA|, c = |BG| = |HD| = |CE| and
d = |GF | = |IE| = |EA|. We also set e = |BD| and f = |DA|.

m
1

m
2

E

CB

A

D
k

2

1
G

F I

H

c

d

a b

f

k

e

The line AB divides the rectangle AFBC into two congruent triangles. Since the areas
of 4BGD and 4BHD are equal, and the areas of 4IDA and 4EAD are equal, we obtain
that the areas of the two smaller rectangles are equal; that is, ad = bc.
Since we drew the line EG parallel to BC, we know that 4AED ∼ 4ACB. So, for this

case, our theorem, which we want to prove, says that

d

c+ d
=

b

a+ b
=

f

e+ f
.

To see that the first of these inequalities is true, notice that it holds when d(a+b) = b(c+d)
(by cross multiplying). But this holds since we have already established that ad = bc.
We check that the second equality is true by using the first equality together with the

Pythagorean theorem. That is, we write f 2 = b2+ d2 and (e+ f)2 = (a+ b)2+ (c+ d)2, and
then, as above, cross-multiply and use the two facts that we have already proven; namely
that ad = bc, and that

d2

(c+ d)2
=

b2

(a+ b)2
.

Now since 4ABC ∼ 4A′B′C ′, we have m∠A = m∠A′ and m∠B = m∠B′. Since k1 is
parallel to BC, m∠B = m∠EDA (using alternate interior angles and vertical angles). Since
|AD| = |A′B′| by construction, 4A′B′C ′ ∼= 4ADE via ASA. Using the above, we conclude
that

|AB|

|A′B′|
=
|BC|

|B′C ′|
=
|CA|

|C ′A′|

as desired. ¤

Now that we have shown the desired property for right triangles, we can use that result
to show it for arbitrary similar triangles.

Theorem 4.6 (Ratios for triangles). Let 4ABC ∼ 4A′B′C ′. Then

|AB|

|A′B′|
=
|BC|

|B′C ′|
=
|CA|

|C ′A′|
.
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Proof. As above, we can assume without loss of generality that |AB| > |A′B′|. Find the
point D on AB so that |AD| = |A′B′|, and draw the line DE parallel to BC. As above,
using alternate interior angles, we see that m∠ADE = m∠ABC and m∠AED = m∠ACB.
Hence 4ADE ∼= 4A′B′C ′, and so it suffices to show that

|AB|

|AD|
=
|BC|

|DE|
=
|CA|

|EA|
.

Let k = AF be the altitude from A, and let G be the point of intersection of k with the
line DE. Then ADF and ADG are similar right triangles, and ACF and AEG are similar
right triangles. Hence the proportion theorem for right triangles yields

|AD|

|AB|
=
|AG|

|AF |
=
|AE|

|AC|
.

That |DE|
|BC|

= |AG|
|AF |

follows easily from the Lemma above. ¤

Exercise 4.5: Prove that the lines joining the midpoints of the sides of a triangle divide
the triangle into four congruent triangles.

4.3. Basic trigonometric functions. Let4ABC be such that ∠C is a right angle. Let
a = |BC|, b = |AC| and c = |AB|. Also, let θ = m∠A. Then, by the proportion theorem
for right triangles, the ratios a/b, a/c, and b/c all depend only on the measure of the angle
θ.
In what follows, we will deliberately confuse an angle with its measure; i.e., we will not

distinguish between ∠A and m∠A. It should always be clear from the context which is
meant.
For 0 < θ < π/2, we define the trigonometric functions as

ratios of lengths in right triangles:

sin θ = a/c
cos θ = b/c
tan θ = a/b = sin θ/ cos θ
cot θ = b/a = 1/ tan θ = cos θ/ sin θ
sec θ = c/b = 1/ cos θ
csc θ = c/a = 1/ sin θ

θ
C

B

A b

c a

We note that it is almost immediate from the definition that

sin(π/2− θ) = cos θ and cos(π/2− θ) = sin θ.

In order to extend the definitions to all values of θ, first we set

sin 0 = 0 and sin
π

2
= 1

which is reasonable since the sine is small for small angles, and close to 1 for angles close to
right angles. Now to define obtuse angles,

sin(π − α) = sin(α) for 0 ≤ α ≤
π

2

and to get negative values, we let

sin(−θ) = − sin(θ).
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Finally, since an angle of 2π represents a full turn, we say that sin(2π + α) = sinα. Putting
these together defines the sine for all values.
We can then use the fact that sin(π/2 − θ) = cos θ and tan θ = sin θ/ cos θ to extend the

definitions of the other functions to all real numbers (except those where we would need to
divide by 0, such as for tan π

2
.

Exercise 4.6: Prove that, for any number θ,

sin2 θ + cos2 θ = 1.

Theorem 4.7 (Law of Sines). Let ABC be a triangle, with sides of length a = |BC|,
b = |AC| and c = |AB|. Then

sinA

a
=
sinB

b
=
sinC

c
.

Proof. We first assume that C is a right angle, and, that c = 1. Then sinA = a and sinB = b,
so the result holds in this case. Using the theorem of proportions for right triangles, our
result holds for all right triangles.

Now let ABC be an arbitrary triangle, where B and C are acute angles (i.e.,
their measures are less than π/2), and let AD be the altitude from A. Then

sinB = |AD|
c
, and sinC = |AD|

b
. Hence

sinB

b
=
|AD|

bc
=
sinC

c
. B C

A

D

c b

We next take up the case that angle B is an obtuse angle. We again drop
the altitude AD from A to the line BC, but now this altitude lies outside
4ABC. Note that B lies between D and C. As above, using our known facts
about right triangles, we obtain, |AD| = |AC| sinC = |AB| sinB, from which
the desired result follows.

A

D

b
c

CB

If angle C is obtuse, repeat the above argument, exchanging B and C.
The other equality follows by looking at the altitude from B and/or C. ¤

Theorem 4.8 (Law of Cosines). Let ABC be a triangle, where none of the angles are right
angles, with sides of length a = |BC|, b = |AC| and c = |AB|. Then

c2 = a2 + b2 − 2ab cosC.

Proof. As above, we need to worry about the possibility that ∠C is obtuse. We first take
up the case that it is acute. It could be that either ∠A or ∠B is obtuse, we note that our
hypotheses, and the formula we wish to prove, remain unchanged if we interchange A and
B; we assume that ∠B is not obtuse. It then follows that if AD is the altitute from A, then
D lies between A and B. Let d = |AD|. Let a1 = |BD|, and let a2 = |DC|. Then, by
the Pythagorean theorem, c2 = a2

1
+ d2. Again by the Pythagorean theorem, d = b2 − a2

2
.

Substituting, we obtain

c2 = a2

1
+d2 = a2

1
+b2−a2

2
= (a1+a2)

2+b2−2a1a2−2a
2

2
= a2+b2−2aa2 = a2+b2−2ab cosC,

where, in the last equality, we have used the fact that cosC = a2/b.
We next take up the case that ∠C is obtuse. In this case, the endpoint of the altitude

AD is such that C lies between B and D. Similar to the above, we set a1 = |CD|. Then the
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Pythorean theorem yields the following.

(a+ a1)
2 + d2 = c2, d2 + a2

1
= b2.

Substituting, we obtain,

c2 = (a+ a1)
2 + b2 − a2

1
= a2 + b2 + 2aa1.

We note that cos(π − C) = a1/b. Hence, upon setting cosC = − cos(π − C), we obtain,

c2 = a2 + b2 +−2ab cos(π − C) = a2 + b2 − 2ab cosC.

¤

4.4. Other important trigonometric formulae. We will not prove the addition for-
mulae for sines and cosines; however, since they are important, we will state them.

Theorem 4.9.

sin(α + β) = sinα cos β + sin β cosα.

Theorem 4.10.

cos(α+ β) = cosα cos β − sinα sin β.

One can easily prove these theorems by constructing 4ABC, where m∠A = α + β, and
the altitude from A divides this triangle into two triangles, 4ABD and 4ADC, in such
a way that m∠BAD = α and m∠DAC = β. Then, using the definitions of the sine and
cosine for right triangles, the addition formula for the sine follows from the law of sines, and
the addition formula for the cosine follows from the Pythagorean theorem and the law of
cosines.

We can use the laws of sines and cosines to obtain information about triangles.

Exercise 4.7: This exercise tells you how to compute the other three pieces of information
about a triangle if you are given SAS.

(a) Assume we are given the lengths a and b of triangle ABC, and we are given ∠C (that
is, we are given sinC and/or cosC). Explain in words how we would find the length
of the other side, and the other two angles. (Hint: Use the above theorems.)

(b) Find explicit formulas for these three pieces of information in explicit terms; that is,
find a formula for c, and find formulas for the other two angles, in terms of a, b and
either sinC or cosC.

Exercise 4.8: Repeat the above for the congruence relation ASA. That is, if you are given
the sines and or cosines of two of the angles, and given the length of the included side, find
the sine or cosine of the other angle and find the lengths of the other two sides.

Exercise 4.9: Repeat the above exercise for AAS.

Exercise 4.10: Repeat the above exercise for SSS.
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5. Circles and lines

5.1. Circles. A circle Σ is the set of points at fixed distance r > 0 from a given point, its
center. The distance r is called the radius of the circle Σ.
The circle Σ divides the plane into two regions: the inside, which is the set of points at

distance less than r from the center O, and the outside, which consists of all points having
distance from O greater than r. Note that every line segment from O to a point on Σ has
the same length r.
A line segment from O to a point on Σ is also called a radius; this should cause no confusion.
A line segment connecting two points of Σ is called a chord, if the chord passes through

the center, then it is called a diameter.
As above, we also use the word diameter to denote the length of a diameter of Σ, that is,

the number that is twice the radius.

Proposition 5.1. A line k intersects a circle Σ in at most two points.

Proof. Suppose we had three points, A, B and C, of intersection of k with Σ.
We first take up the case that k is a diameter. In this case, we would have at least two of

the three points on the same side of O on k; hence we can suppose that A and B both lie
on the same side of O. However, by the ruler axiom (Axiom 6), we must have |OA| 6= |OB|
since A 6= B. This contradicts our assumption that A and B both lie on Σ.
We next take up the case that k is not a diameter. We can assume that B lies between

A and C on k. Draw the line segments, OA, OB, OC. Then OAB, OAC and OBC are
triangles. In fact, since |OA| = |OB| = |OC|, they are isosceles triangles. Let α be the
measure of the base angles of triangle OAB. Then it is also the measure of the base angle
of 4OAC, and so it is also the measure of the base angle of 4OBC. Since the two base
angles at B add up to π, we obtain that each of the three triangles have two right angles,
which is impossible. ¤

Proposition 5.2. Let AB be a chord of a circle Σ with center O. Then the perpendicular
bisector of AB passes through O.

Exercise 5.1: Prove the preceding proposition.

5.2. Central angles. While we have spent a fair amount of time determining when two
angles have the same measure, we have not discussed explicitly calculating the measure of
an angle, except in the case of an angle of measure π and a right angle (measure π/2). We
shall do so now.
First, we assume the well-known property that the circumference (that is, the arc length)

of a circle of radius r is 2πr.
Now let A and B be two points on a circle of radius 1 and center O. The radii AO and

BO make two angles AOB (the “inner” and the “outer” angles); call them α and β. An
angle such as α whose vertex is at the center of the circle is called a central angle. Notice
that α + β = 2π, no matter where A and B lie on Σ. If A and B are the endpoints of a
diameter, they divide the circle into two arcs, each of length π; note also that the measure of
the angles α and β are also π. In other cases, the length of the arc subtended by the angle
α will be whatever fraction of 2π that α is of the entire circle. For example, if α is a right
angle, it will take up 1/4 of the circle, and the corresponding arc length will be π/2. We
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define the measure of the angle to be the corresponding arc length when that angle is the
central angle of a circle of radius 1.

Theorem 5.3 (measure of inscribed angle is half the central angle).
Let A, B and C be points on the circle Σ of radius r. Draw the
chords AB and BC, and draw the radii, OA and OC. Let α be
the measure of the inscribed angle ABC. Then the measure of the
central angle AOC is 2α. (Here we mean the angle AOC which
subtends the arc not containing B.)

O

α

2α

CA

B

Proof. Draw the line OB. This divides quadrilateral ABCO into two isosceles triangles. Let
β be the measure of the base angles of 4OAB, and let γ be the measure of the base angles
of 4OBC Then the measure of the requisite central angle is given by

m∠AOC = 2π − (π − 2β)− (π − 2γ) = 2(β + γ) = 2m∠ABC = 2α

¤

5.3. Circumscribed circles. The circle Σ is circumscribed about 4ABC if all
three vertices of the triangle lie on the circle. In this case, we also say that the
triangle is inscribed in the circle.

Note that another way to describe a circle circumscribed about a triangle is to say that
it is the smallest circle for which every point inside the triangle is also inside the circle. In
this view, the problem of circumscribing a circle becomes a minimization problem. A given
triangle lies inside many circles, but the circumscribed circle is, in some sense, the smallest
circle which lies outside the given triangle.
It is not immediately obvious that one can always solve this minimization problem, nor

that the solution is unique.

Proposition 5.4 (Uniqueness of Circumscribed Circles). There is at most one circle cir-
cumscribed about any triangle.

Proof. Suppose there are two circles Σ and Σ′ which are circumscribed about 4ABC. Since
points A, B, and C lie on both circles, AB and BC are chords. By Prop. 5.2, the perpen-
dicular bisectors of AB and BC both pass through the centers of Σ and Σ′. Since these two
distinct lines can intersect in at most one point, Σ and Σ′ share the same center O. Since
AO is a radius for both circles, they have the same center and radius, and hence are the
same circle. ¤

Theorem 5.5 (Existence of Circumscribed Circles). Given 4ABC, there is always exactly
one circle Σ circumscribed about it.

Proof. We need to show that the perpendicular bisectors of the sides of 4ABC meet at a
point, and that this point is equidistant from all three vertices. Then the requisite circle will
have this point as its center O, and the radius will be the length of AO. Uniqueness was
shown in Prop. 5.4.
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Let D and E be the midpoints of sides AB and BC respectively.
Draw the perpendicular bisectors of AB and BC, and let O be the
point where these two lines meet (note that O need not be inside
the triangle). Draw the lines AO, BO and CO.
We cannot have both that O = D and O = E (since D 6= E),
hence we can assume without loss of generality that O 6= D. Then
we have |AD| = |DB|, angles ∠ADO and ∠BDO are both right
angles, and of course, |DO| = |DO|. Hence, 4ADO ∼= 4BDO by
SAS. In particular, |AO| = |BO|. If O = E, then we have shown
that |AO| = |BO| = |CO|, from which it follows that there is a
circumscribed circle with center O and radius |AO|.

D

B
O

E

C

A

If O 6= E, then we repeat the above argument to show that 4BOE ∼= 4COE, from
which, as above, it follows that |OB| = |OC|. Again, this shows that there is a circumscribed
circle. ¤

Corollary 5.6. In any triangle, the three perpendicular bisectors of the sides meet at a point.

Exercise 5.2: Explain why Theorem 5.5 implies this corollary.

Corollary 5.7 (Three Points Determine a Circle). Given any three non-colinear points,
there is exactly one circle which passes through all three of them.

Exercise 5.3: Explain why this corollary follows from Theorem 5.5.

5.4. Tangent lines and inscribed circles. A line that meets a circle in exactly one
point is a tangent line to the circle at the point of intersection. Our first problem is to show
that there is one and only one tangent line at each point of a circle.

Proposition 5.8. Let A be a point on the circle Σ, and let k be the line through A perpen-
dicular to the radius at A. Then k is tangent to Σ.

Proof. There are only three possibilities for k: it either is disjoint from Σ, which cannot be,
as A is a common point; or it is tangent to Σ at A; or it meets Σ at another point B. If k
meets Σ at B then OAB is a triangle, where ∠A is a right angle. Since OA and OB are both
radii, |OA| = |OB|. Hence 4OAB is isosceles. Hence m∠A = m∠B. We have constructed
a triangle with two right angles, which cannot be; i.e., we have reached a contradiction. ¤

Proposition 5.9. If k is a line tangent to the circle Σ at the point A, then k is perpendicular
to the radius ending at A.

Proof. We will prove the contrapositive: if k is a line passing through A, where k is not
perpendicular to the radius, then k is not tangent to Σ.

Draw the line segment m from O to k, where m is perpendicular
to k. Let B be the point of intersection of k and m. On k, mark off
the distance |AB| from B to some point C, on the other side of B
from A. Since OB is perpendicular to k, m∠OBA = m∠OBC. By
SAS, 4OBA ∼= 4OBC, and so |OC| = |OA|. Thus both A and C
lie on Σ, and k intersects Σ in two points. Thus, k is not tangent
to Σ.

O

A CB
k

¤
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Corollary 5.10. Let A be a point on the circle Σ. Then there is exactly one line through A
tangent to Σ.

Exercise 5.4: Prove this Corollary.

A circle Σ is inscribed in 4ABC if all three sides of the triangle are
tangent to Σ. One can view the inscribed circle as being the largest circle
whose interior lies entirely inside the triangle. (Note that it is not quite
correct to say that the circle lies entirely inside the triangle, because the
triangle and the circle share three points.)

We start the search for the inscribed circle with the question of what it means for the
circle to have two tangents which are not parallel.

Proposition 5.11. Let A be a point outside the circle Σ, and let k1 and k2 be tangents to
Σ emanating from A. Then the line segment OA bisects the angle between k1 and k2.

Proof. Let Bi be the point where ki is tangent to Σ, for i = 1, 2. Draw the lines OB1 and
OB2. Observe that |OB1| = |OB2|, and that, since radii are perpendicular to tangents,
∠OB1A = ∠OB2A, and these are both right angles.
By SSA, 4OB1A ∼= 4OB2A. Hence m∠OAB1 = m∠OAB2. ¤

From the above, we see that if there is an inscribed circle for 4ABC, then its center lies
at the point of intersection of the three angle bisectors, and its radius is the distance from
this point to the three sides. Hence we have proven the following.

Corollary 5.12 (Inscribed circles are unique). Every triangle has at most one inscribed
circle.

Theorem 5.13. Every triangle has an inscribed circle.

Proof. Let G be the point of intersection of the angle bisectors from A and B in 4ABC.
Let D be the point where the orthogonal from G meets AB; let E be the point where the
orthogonal from G meets BC; and let F be the point where the orthogonal from G meets
AC.
Observe that, by AAS, 4ADG ∼= 4AFG. Similarly, 4BDG ∼= 4BEG and 4CEG ∼=

4CFG.
We have shown that the perpendiculars from G to the three sides all have equal length;

call this length r. then the circle centered at G of radius r is tangent to the three sides of
4ABC exactly at the points D, E and F . ¤

This theorem gives another proof of the result of exercise 2.16.

Corollary 5.14. The three angle bisectors of a triangle meet at a point; this point is the
center of the inscribed circle.

Exercise 5.5: Give a proof of this corollary using the above theorem.

Exercise 5.6: Let 4ABC and 4A′B′C ′ be such that |AB| = |A′B′|, |BC| = |B ′C ′|, and
m∠C = m∠C ′ = π/2. Prove that 4ABC ∼= 4A′B′C ′.

Exercise 5.7: Let A and B be points on the circle Σ. Let k be the line tangent to Σ at A
and let m be the line tangent to Σ at B. Prove that if k and m are parallel, then the line
segment AB is a diameter of Σ.
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6. Some Amusements

6.1. Amusement 1: Fill in the steps in the construction below, and observe the result.

(1) Start with arbitrary triangle 4T1 = 4ABC.
(2) Construct the lines k, m and n, parallel to AB, BC and CA, respectively.
(3) These three lines form a new triangle, 4T0 = 4A′B′C ′; label these so that B ′C ′ is

parallel to BC, A′C ′ is parallel to AC and A′B′ is parallel to AB.
(4) Observe that the sides of 4T1 divide 4T0 into four triangles.
(5) Since the sides are parallel, these four triangles are all similar to the big triangle; in

particular, 4A′B′C ′ ∼ 4ABC.
(6) Since they have some sides in common, the four smaller triangles are all congruent.
(7) It follows that A is the midpoint of B ′C ′; B is the midpoint of A′C ′; and C is the

midpoint of A′B′.
(8) Construct the perpendicular bisectors of A′B′, B′C ′ and A′C ′; we know these all

meet at a point ; call it O. (O is the center of the circumscribed circle for 4A′B′C ′;
this center is called the orthocenter).

(9) The lines OA, OB and OC, when extended, are altitudes of 4ABC.
(10) We have shown that the three altitudes of an arbitrary triangle meet at a point.

6.2. Amusement 2:

(1) Let 4ABC be an arbitrary triangle.
(2) Let AD and BE be medians. Let G be the point of intersection of these two lines.
(3) Draw the line DE.
(4) Observe that DE is parallel to AB. (This was part of a homework assignment.)
(5) Then 4GAB ∼ 4GDE.
(6) We know that |DE| = 1/2|AB|. Hence, |GD| = 1/2|AG| and |GE| = 1/2|GB|.
(7) Repeat the above argument, using the medians from A and C.
(8) Conclude that the three medians of an arbitrary triangle meet at a point. (This point

is called the centroid of the triangle; it is at the center of gravity.)
(9) We also have shown that the centroid divides each median into two segments; the

segment between the centroid and the vertex is twice as long as the segment between
the centroid and the opposite side.

6.3. Circles and circles. Two circles Σ and Σ′ either are disjoint, or they meet at a
point, in which case they are said to be tangent, or they meet at two points, in which case,
they intersect.
It is essentially immediate that two circles with the same center but different radii are

disjoint.
Since a line is the shortest distance between two points, if we have two circles where

the distance between the centers is greater than the sum of their radii, then the circles are
necessarily disjoint.
If we have two circles with the property that the distance between their centers is exactly

equal to the sum of their radii, then the line between their centers contains a point on both
circles.

Proposition 6.1. If two circles have three points in common, then they are identical.

Proof. Label the three points as A, B and C, and draw the lines AB, BC and CA.
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The three points cannot be collinear, for a line intersects a circle in at most two points.
Since the three points are not collinear they form a triangle. Then both circles are circum-
scribed about 4ABC. Since the circumscribed circle about a triangle is unique, the two
circles are the same. ¤

Proposition 6.2. Suppose the circles Σ and Σ′ intersect at the points A and B. Let O be
the center of Σ and let O′ be the center of Σ′. Then the line OO′ is the perpendicular bisector
of the line segment AB.

Proof. Since AB is a chord of Σ (Σ′), the perpendicular bisector of the chord AB passes
through the center O (O′). Hence the perpendicular bisector of the line segment AB is the
line determined by O and O′. ¤

Proposition 6.3. Suppose the circles Σ and Σ′ are tangent at A. Then the line connecting
the centers of these circles, passes through A.

Proof. Let O be the center of Σ and let O′ be the center of Σ′. Suppose the line OO′ does not
pass through A. Construct the perpendicular from A to the line OO′, and let B be the point
where this perpendicular bisector meets OO′. Now construct the point C on the line AB so
that B lies between A and C and so that |AB| = |BC|. Then, by sas, 4OAB ∼= 4OCB.
Hence |OC| = |OA|, from which it follows that C lies on Σ. Using the same argument,
4O′AB ∼= 4O′CB, from which it follows that C lies on Σ′. We have constructed a second
point of intersection of Σ and Σ′; since we assumed these circles had only one point in
common, we have reached a contradiction. ¤

Corollary 6.4. If the circles Σ and Σ′ are tangent at A, and k is the line tangent to Σ at
A, then k is tangent to Σ′.

Proof. Since Σ and Σ′ are tangent at A the line OO′ connecting their centers passes through
A. Hence the radius of Σ at A lies on the line OO′, and so OO′ is orthogonal to k. The
same argument shows that the radius of Σ′ lies on the line OO′. Since the tangent to Σ′ at
A is the line orthogonal to the radius at A, it is k. ¤

We now return to the case of intersecting circles. Suppose the circles Σ and Σ′ intersect at
the points A and B. Then the line joining the centers O and O′ is the perpendicular bisector
of the line segment AB. We draw the radii, OA, OB, O′A and O′B. We define the angle of
intersection of these two circles at A to be π−m∠OAO′. Likewise, the angle of intersection
at B is π − ∠OBO′.

Remark: We could have chosen the angle between the circles to be ∠OAO′. The reason
for our choice is that, if two circles are tangent, and each lies outside the other, then, by
continuity, the angle between them is 0, while if one lies inside the other, then the angle
between them is π.

Proposition 6.5. If the circles Σ and Σ′ intersect at A and B, then the angle of intersection
at A has the same measure as the angle of intersection at B.

Proof. We draw the line AB, which is a chord for both circles. We know that OO ′ is the
perpendicular bisector of this chord; let C be the point of intersection of the lines AB and
OO′.
Observe first that, by sss, 4OAC ∼= 4OBC and 4O′AC ∼= 4O′BC. It follows that

m∠OAC = m∠OBC and that m∠O′AC = m∠O′BC. Hence m∠OAO′ = m∠OBO′. ¤
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Since the angle of intersection at A and the angle of intersection at B have the same
measure, we can simply call it the angle of intersection of the two circles.
We remark that, since the tangent to Σ at A is orthogonal to OA, and the tangent to

Σ′ at A is orthogonal to O′A, then the angle between the lines OA and O′A has the same
measure as one of the angles between these tangents.

Proposition 6.6. Suppose we are given three positive real number, a, b and c, where a < c,
b < c and a+ b > c. Then there is a triangle with sides a, b and c.

Proof. Consider the line segment AB, where |AB| = c. Draw the circle of radius a centered
at B, and draw the circle of radius B centered at a. Since a + b > c there are points on
AB that lie inside both circles. Hence either one circle lies inside the other, or the circles
intersect.
Since a < c, the point A lies outside the circle centered at B, and since b < c, the point

B lies outside the circle centered at A. Hence neither circle lies inside the other, and so the
circles intersect. Let C be one of the points of intersection, and observe that |AC| = b and
|BC| = a. ¤

6.4. Orthogonal circles. Two circles are orthogonal if the angle between them is π/2.

Proposition 6.7. Let Σ be a circle with center O and radius r. Let A be some point on Σ,
and let r′ > 0 be any real number. Then there is a unique circle Σ′ of radius r′, orthogonal
to Σ, where the center O′ of Σ′ lies on the line OA, and O′ lies on the same side of O as
does A.

Proof. We first prove uniqueness. Suppose we have such a circle Σ′. Let A be one of the
two points of intersection of Σ and Σ′. Then the triangle OO′A is a right triangle with right
angle at A. Hence, by the Pythagorean theorem, |OO′|2 = r2 + (r′)2. This shows that the
distance from O to O′ is determined; hence the circle Σ′ is determined.
To prove existence, find the point O′ on OA, on the same side of O as A, and at distance

√

r2 + (r′)2

from O. Then construct the circle Σ′ of radius r′ at that point.
To show that Σ and Σ′ intersect, it suffices to show that there is a point B on both Σ and

Σ′, or equivalently, that there is a triangle with side lengths, r, r′ and |OO′|. This follows

from the above proposition, once we observe that r <
√

r2 + (r′)2, r′ <
√

r2 + (r′)2, and
√

r2 + (r′)2 < r + r′. ¤

We remark without proof that, given two orthogonal circles Σ and Σ′, there is a 1-
parameter family of circles orthogonal to both Σ and Σ′. However, given three mutually
orthogonal circles, there is no fourth circle orthogonal to all three.

6.5. Tangent circles.

Proposition 6.8. Let Σ be a given circle of radius r and center O. Let A be any point,
where A 6= O and A does not lie on Σ. Then there is a circle Σ′, centered at A, where Σ′

and Σ are tangent.

Proof. Draw the line OA. This line intersects Σ in two points; let B be one of them. Draw
the circle Σ′ of radius |AB| about A. This circle certainly meets Σ at B. Since B lies on the
line connecting the centers of the circles, the circles are tangent at B. ¤
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We remark that we have in fact shown that there are exactly two circles centered at A
that are tangent to Σ.
There are three possible orientations for the two tangent circle. We can have that Σ lies

outside Σ′ and Σ′ lies outside Σ, or we can have that Σ lies inside Σ′, or we can have that
Σ′ lies inside Σ.

Exercise: Suppose A, B and C are three given points on a line. How many distinct
triples of mutually tangent circles are there, where one of the circles is centered at A, one is
centered at B, and the third is centered at C.

Proposition 6.9. Let 4ABC be given. Then there are three mutually tangent circles, ΣA

centered at A, ΣB centered at B, and ΣC centered at C. If we require that each of the three
circles lies outside the others, then the radii of these circles are determined by the lengths of
the sides of the triangle.

Proof. We need to find the radii; call these α, β and γ, where α is the radius of ΣA, β is the
radius of ΣB and γ is the radius of ΣC . Then we must solve the equations:

α + β = |AB|, β + γ = |BC|, γ + α = |CA|.

It is an exercise in linear algebra to show that these equations have a unique solution. ¤

We close with the remark that, given three mutually tangent circles, there exist exactly
two disjoint circles that are tangent to all three. If one has four mutually tangent circles,
then there can be no fifth.


