
MATH 141 Solutions to Midterm 2
1. (a)5 pts. Give a complete and careful definition of the derivative of a function f(x) at the point

x = a.

Solution:

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

provided the limit exists.
You could also give the equivalent limit

f ′(a) = lim
x→a

f(x)− f(a)
x− a

(b)5 pts. Give a complete statement of the Extreme Value Theorem.

Solution: If f is continuous on a closed interval [a, b], then it attains its maximum and minu-
mum values there. Specifically, there are numbers t and s in [a, b] so that for all a ≤ x ≤ b, we
have f(t) ≥ f(x) and f(s) ≥ f(x).

(c)5 pts. Let f : A→ B where A and B are both sets of real numbers. Define what the statement
“The function g is the inverse of f” means.

Solution: Let C ⊆ B be the image of f(A). Then g is the inverse of f if

• for every x ∈ A we must have g(f(x)) = x, and

• for every y ∈ C, we have f(g(y)) = y.

Both conditions are necessary.

(d)5 pts. Give a definition of the following statement: “The function f(x) has an essential discon-
tinuity at x = a.”

Solution: f(x) has an essential discontinuity at x = a if

• f(x) is not continuous at x = a, and

• there is no number L such that limx→a f(x) = L, and consequently there is no way to
redefine f(a) so that f(x) is continuous at x = a.
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2. For each of the functions below, calculate its derivative.

(a)5 pts. f(x) = cos 2x ln 3x

Solution: Use the product rule and the chain rule to obtain f ′(x) =
cos 2x

x
− 2 sin 2x ln 3x.

(b)5 pts. g(x) = |x|3

Solution: If x > 0, we have g(x) = x3 and so g′(x) = 3x2. If x < 0, we have g(x) = −x3 and so
g′(x) = −3x2. Note that

lim
h→0

g(h)− g(0)
h

= lim
h→0

|h3|
h

= lim
h→0

h|h| = 0,

which agrees with both formula for g′ at x = 0, so g′(0) makes sense and is zero. Thus,

g′(x) =

{
3x2 x ≥ 0

−3x2 x < 0
=

{
3|x|3
x

x 6= 0

0 x = 0
.

(c)5 pts. h(x) = (1 + sinx)x

Solution: We use logarithmic differentiation here. We have

ln(h(x)) = ln ((1 + sin x)x) = x ln(1 + sin x).

Thus,
h′(x)

h(x)
= ln(1 + sinx) + x

cosx

1 + sin x

and so

h′(x) = (1 + sinx)x
(
ln(1 + sin x) + x

cosx

1 + sin x

)
.

(d)5 pts. a(x) = arcsin(2x1/2)

Solution:
a′(x) =

1√
1− (2x1/2)2

· x−1/2 = 1
√
x
√
1− 4x

=
1√

x− 4x2
.
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3.20 pts. Let

f(x) =

{
sinx if x is rational
x if x is irrational

.

Is f(x) differentiable at x = 0? If your answer is yes, calculate f ′(0). In either case, justify
your answer fully.
Hint: don’t panic. Use the force (or maybe problem (1a)).

Solution: Let’s use the definition of the derivative

f ′(0) = lim
h→0

f(h)− f(0)
h

= lim
h→0

f(h)

h

Now let {hk} be any sequence with hk → 0. Form a subsequence {ri} consisiting of all the
rational values of hk, and {qj} consisting of all the remaining irrational values. Then

lim
f(qj)

qj
= lim

qj
qj

= 1, and lim
f(ri)

ri
= lim

sin(ri)

ri
= 1

(since sin(x)/x→ 1 and x→ 0).

Since lim f(qj)/qj = lim f(ri)/ri = 1, we have lim(f(hk)/hk) = 1, and consequently, f ′(0) = 1.

If you don’t want to use sequences, you could just observe that for h 6= 0, we have sin(h)/h ≤
f(h)/h ≤ 1 and use the squeeze theorem. It is really the same thing.
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4.20 pts. The Fundamental Theorem of Algebra tells us that if pn(z) is any polynomial of degree n, it
can factored into a constant times the product of n linear terms. That is, there are complex
numbers ρj , j = 1 . . . n and a constant a so that

pn(z) = a(z − ρ1)(z − ρ2)(z − ρ3) · · · (z − ρn).

Use this to show (using induction on the degree n) that the derivative of any polynomial pn
can be written in the form

p′n(z) = pn(z)
n∑

j=1

1

z − ρj
, (*)

provided pn(z) 6= 0.
Hint: you may assume a = 1 to make things a little easier, since if a 6= 1 we may instead work with
the polynomial q(z) = p(z)/a.

Solution: As mentioned in the hint, we may assume that p is a monic polynomial, that is, a = 1.

For the base case, we observe that if p1(z) = z + b, we have p′1(z) = 1 = p1(z)
z+b

(here ρ1 = −b).
For the inductive step, we want to show that as long as we know that every polynomial pn−1 of
degree n− 1 satisfies (*), we also know it holds for any polynomial pn of degree n.

So, let pn(z) be any monic degree n polynomial. By the fundamental theorem of algebra,

pn(z) = (z − ρ1)(z − ρ2)(z − ρ3) · · · (z − ρn).

Now let pn−1(z) = (z − ρ1)(z − ρ2)(z − ρ3) · · · (z − ρn−1), and so pn(z) = pn−1(z) · (z − ρn), and
pn−1(z) = pn(z)/(z − ρn) (as long as z 6= ρn).

Using the product rule, we have p′n(z) = p′n−1(z) · (z − ρn) + pn−1(z), and then, since the degree
of pn−1(z) is n− 1, we apply the inductive hypothesis to get

p′n(z) = pn−1(z)
(n−1∑

j=1

1

z − ρj

)
· (z − ρn) + pn−1(z)

= pn(z)
(n−1∑

j=1

1

z − ρj

)
+

pn(z)

z − ρn

= pn(z)
( n∑

j=1

1

z − ρj

)
,

as desired.

Alternatively, you could use logarithmic differentiation, to turn the product into a sum of logs.
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