MAT 141 Honors Calculus Exam 1 9 October 2009

Instructor: Joshua Bowman

Name (please print):

Instructions:

- STAY CALM. DON'T PANIC. ③
- Please wait to begin the exam until after everyone present has received it.
- The exam consists of five pages (not counting this cover), with six questions. Please check that you have all the pages.
- Read each question carefully, and answer the same way. Partial credit will be given where appropriate.
- No calculators, notes, or textbooks are allowed on this exam.
- You may leave when you have finished.

Question	Points	Score
1	24	
2	18	
3	15	
4	10	
5	18	
6	15	
Total	100	

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work.

Understanding this, I declare I shall not give, use, or receive unauthorized aid in this examination.

- 1. (3 points each)
 - (a) Suppose that A and B are sets. Give the definitions of $A \cup B$ and $A \cap B$.
 - (b) What does it mean for an interval to be bounded?
 - (c) What does it mean for a sequence to be bounded?
 - (d) Give the precise meaning of the phrase, "the sequence $\{a_n\}_{n=0}^{\infty}$ converges to L."
 - (e) State the Completeness Axiom.
 - (f) State the Bolzano–Weierstrass Theorem.
 - (g) State the Comparison Test for positive series.
 - (h) State the Alternating Series Test.

2. For each of the following sequences and series, find its limit or state that it diverges. (3 points each)

(a)
$$(-1)^n + \frac{1}{n}$$

(b)
$$\frac{3n^3 - 1}{2 - n^2 + n^3}$$

(c)
$$\frac{\cos k}{k!}$$

(d)
$$1 - \frac{\pi^2}{2} + \frac{\pi^4}{24} - \frac{\pi^6}{720} + \dots + (-1)^k \frac{\pi^{2k}}{(2k)!} + \dots$$

(e)
$$\sum_{k=0}^{\infty} \left(-\frac{1}{2}\right) \left(-\frac{1}{4}\right)^k$$

(f)
$$\sum_{k=1}^{\infty} \frac{3}{2k}$$

3. Use induction to prove that

$$3 + 11 + \dots + (8n - 5) = 4n^2 - n$$

for all integers $n \ge 1$. (15 points)

4. Find all accumulation points of the sequence $z_n = i^n$. (10 points)

5. Suppose that $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ are convergent sequences and that $b_n - a_n$ converges to 0. Show that a_n and b_n have the same limit. (We have used this fact several times in class. Do not just assume this is obvious. Give a clear and correct proof, using any definitions and theorems you find appropriate.) (18 points)

6. (a) Using the series definition of e^x , show that $e^a > 1$ whenever a > 0. (8 points)

(b) Show that if b < 0, then $0 < e^b < 1$. (*Hint:* Think of b as -a for some positive a and use the key property of exponentials.) (7 points)

comic by Randall Munroe
http://xkcd.com/179/