SOLUTIONS TO MIDTERM II (MAT 132, SPRING 2010)

Each problem is worth 20 points.
(1) If 50 foot-pounds of work is needed to stretch a spring from its natural length of 10 feet to a length of 12 feet, then how much work is needed to stretch the spring from a length of 11 feet to a length of 15 feet. Show work.
Solution Let $x=0$ correspond to the rest position. The force needed to overcome the force of the spring at position x is $F(x)=k x$. Thus the work needed to stretch the spring from 0 to 2 is given by $\int_{0}^{2} k x d x=2 k=50$; thus $k=25$. The work needed to stretch the spring from 11 feet to 15 feet is equal to $\int_{1}^{5} 25 x d x=\left.\frac{25 x^{2}}{2}\right|_{1} ^{5}=\frac{5^{4}}{2}-\frac{5^{2}}{2}$.
(2) Find the length of curve $y=\int_{0}^{x}\left(u^{2} e^{u^{2}}-1\right)^{\frac{1}{2}} d u, 1 \leq x \leq 3$. Show work. Solution: Length $=\int_{1}^{3}\left(1+\left(y^{\prime}\right)^{2}\right)^{\frac{1}{2}} d x=\int_{1}^{3}\left(1+\left(\left(x^{2} e^{x^{2}}-1\right)^{\frac{1}{2}}\right)^{2}\right)^{\frac{1}{2}}=$ $\int_{1}^{3}\left(x^{2} e^{x^{2}}\right)^{\frac{1}{2}} d x=\int_{1}^{3} x e^{\frac{x^{2}}{2}} d x=\left.e^{\frac{x^{2}}{2}}\right|_{1} ^{3}=e^{\frac{9}{2}}-e^{\frac{1}{2}}$.
(3) Let \mathbb{R} denote the region in the plane bounded by the curves $x=2$, $x=9, y=\sin (x)$ and $y=3^{x}$.
(a) Express the area of \mathbb{R} as a definite integral.

Solution: $\int_{2}^{9}\left(3^{x}-\sin (x)\right) d x$
(b) Let S_{1} denote the solid obtained by rotating the region \mathbb{R} about the line $y=-2$. Express the volume of S_{1} as a definite integral.
Solution $\int_{2}^{9} \pi\left(\left(3^{x}+2\right)^{2}-(\sin (x)+2)^{2}\right) d x$
(c) Let S_{2} denote the solid obtained by rotating the region \mathbb{R} about the y-axis. Express the volume of S_{2} as a definite integral.
Solution: $\int_{2}^{9} 2 \pi x\left(3^{x}-\sin (x)\right) d x$
(4) A spherical tank of radius 3 meters is buried in the ground so that the top of the tank is 4 meters beneath ground level. The tank is filled with a liquid which has a density of 1500 kilograms $/$ meter 3. How much work does it take to pump all of the liquid to ground level? (Recall that gravitational acceleration is 9.8 meters $/$ second 2.) Show work.
Solution: First we must place a coordinate system. I choose to let $x=0$ correspond to the bottom of the tank, $\mathrm{x}=6$ correspond to the top of the tank
and $\mathrm{x}=10$ correspond to ground level. (There are many ways to impose a coordinate system on the problem; they are all equally correct.)

The radius of a cross section of the spherical tank at level x_{i} is equal to $\left(6 x_{i}-\left(x_{i}\right)^{2}\right)^{\frac{1}{2}}$. So the volume of the liquid in the tank between level x_{i} and level $x_{i}+\Delta x$ is approximately equal to $\pi\left(6 x_{i}-\left(x_{i}\right)^{2}\right) \triangle x$ cubic meters; thus the mass of this liquid is approximately equal to $1500 \pi\left(6 x_{i}-\left(x_{i}\right)^{2}\right) \triangle x$ kilograms. The force needed to lift this portion of the liquid to ground level is approximately $9.8(1500) \pi\left(6 x_{i}-\left(x_{i}\right)^{2}\right) k g-m / \sec ^{2}=$ newtons for a distance of approximately $10-x_{i}$ meters; thus the work required to lift this portion of the liquid to ground level is approximately $\left(10-x_{i}\right) 9.8(1500) \pi\left(6 x_{i}-\left(x_{i}\right)^{2}\right) \triangle x$ newton-meters=joules. So the total work (in joules) is approximated by the sums of all these portions of work

$$
\sum_{i=1}^{n}\left(10-x_{i}\right) 9.8(1500) \pi\left(6 x_{i}-\left(x_{i}\right)^{2}\right) \triangle x .
$$

Taking the limit as $n \rightarrow \infty$ we get that the total work is equal to

$$
\int_{0}^{6}(10-x) 9.8(1500) \pi\left(6 x-x^{2}\right) d x
$$

joules.
(5) Consider the plate (also called a lamina) which occupies the region in the plane lying between the x -axis and the graph of $y=x \ln (x), 1 \leq x \leq e$. Suppose that this plate has constant density ρ.
(a) Compute the mass of the plate (in terms of ρ). Show work.

Solution: mass $=\rho \int_{1}^{e} x \ln (x) d x=\left.\left(\frac{x^{2} \ln (x)}{2}-\frac{x^{2}}{4}\right)\right|_{1} ^{e}=\left(\frac{e^{2}}{4}\right)-\left(-\frac{1}{4}\right)$.
(b) Let m denote the mass of the plate and let (\bar{x}, \bar{y}) denote the center of mass of the plate. Express each of $m \bar{x}$ and $m \bar{y}$ as a definite integral.
Solution: $m \bar{x}=\rho \int_{1}^{e} x(x \ln (x)) d x$ and $m \bar{y}=\rho \int_{1}^{e} \frac{1}{2}(x \ln (x))^{2} d x$.

