MAT 132 Solutions to Midterm 2 (mango)

1. For each of the following sequences, determine whether it converges or diverges. If the sequence converges, give its limit. Justify your answer.
(a) $\left\{\frac{n^{4}+\cos (n \pi)}{(1+3 n)\left(2+n^{3}\right)}\right\}_{n=0}^{\infty}=-\frac{1}{2}, \frac{1}{6}, \frac{3}{70}, \ldots$

Solution: For n large, the $\cos (n \pi)$ term is irrelevant, as are the lower powers of n in the denominator. Thus

$$
\lim _{n \rightarrow \infty} \frac{n^{4}+\cos (n \pi)}{(1+3 n)\left(2+n^{3}\right)}=\lim _{n \rightarrow \infty} \frac{n^{4}}{3 n^{4}}=\frac{1}{3}
$$

(b) $\left\{\frac{\ln (2 n)}{n}\right\}_{n=1}^{\infty}=\ln 2, \ln 2, \frac{\ln 6}{3}, \ldots$

Solution: $\lim _{n \rightarrow \infty} \frac{\ln (2 n)}{n}$ is of the form ∞ / ∞, so we can use L'Hôpital's rule. Thus,

$$
\lim _{n \rightarrow \infty} \frac{\ln (2 n)}{n}=\lim _{n \rightarrow \infty} \frac{1 / n}{2}=0
$$

(c) $\left\{\pi+(-1)^{n}\right\}_{n=0}^{\infty}=\pi+1, \pi-1, \pi+1, \ldots$

Solution: The sequence diverges, because the limit as $n \rightarrow \infty$ does not exist; it alternates between $\pi+1$ and $\pi-1$.

10 pts
2. What value of N do we need to ensure that the sum $\sum_{n=0}^{N} \frac{(-1)^{n}}{n^{2}+4}$ is within $1 / 100$ of the limit? Keep in mind that N must be a whole number.

Solution: Since this is an alternating series, we know that the remainer R_{N} is less than the absolute value of the $N+1$-st term. This means we want N so that

$$
\frac{1}{(N+1)^{2}+4}<\frac{1}{100} \quad \text { or, equivalently } \quad 100<(N+1)^{2}+4
$$

This holds for $N=9$.
3. Find the volume of the solid whose base is the half-circle

$$
x^{2}+y^{2}=4 \quad \text { with } y \geq 0
$$

and whose cross-sections perpendicular to the y-axis are squares.
Solution: Note that since the cross-sections perpendicular to the y-axis are squares, we want to integrate $d y$. (If we tried to integrate $d x$, we would have very complicated slices.)
So, we write the base as $x= \pm \sqrt{4-y^{2}}$, and observe that if we take a slice at a particular y value, the square cross section will stretch from $x=-\sqrt{4-y^{2}}$ to $x=+\sqrt{4-y^{2}}$. This means the side length of the square is $2 \sqrt{4-y^{2}}$, and its area is $4\left(4-y^{2}\right)$.

The volume of the solid is then given by integrating the crosssectional area as y ranges from 0 to 2 .

$$
V o l=\int_{0}^{2} 4\left(4-y^{2}\right) d y=\left.4\left(4 y-y^{3} / 3\right)\right|_{0} ^{2}=4\left(8-\frac{8}{3}\right)=\frac{64}{3}
$$

15 pts 4. Find the area that lies inside the polar curve $r=\sqrt{1-\sin \theta}$ but outside the circle $r=-\sqrt{2} \sin \theta$.

Solution: It is easiest to do this by calculating the outer area first, and then subtract off the inner area. The two curves meet at the origin and along the negative y-axis.
The area inside the cardiod-like shape is

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{2 \pi}(\sqrt{1-\sin \theta})^{2} d \theta & =\frac{1}{2} \int_{0}^{2 \pi} 1-\sin \theta d \theta \\
& =\left.\frac{1}{2}(\theta+\cos \theta)\right|_{0} ^{2 \pi}=\frac{1}{2}((2 \pi+1)-1) \\
& =\pi
\end{aligned}
$$

The circle has radius $\sqrt{2} / 2$, so its area is $\pi / 2$.
This means the shaded area is $\pi-\pi / 2=\frac{\pi}{2}$.

15 pts 5. Find the volume of the solid obtained by rotating the region between the two curves

$$
y=2 x \quad \text { and } \quad y=x^{2}
$$

about the y-axis.
(a) Write an integral which represents the volume.

Solution: Note that the curves cross at $(0,0)$ and $(2,4)$.
We can integrate $d y$ or $d x$, as we wish. If we integrate with respect to x, we have cylindrical shells. The height of each cylinder runs from $y=x^{2}$ to $y=2 x$, so it is $2 x-x^{2}$. The radius of the cylinder is x. This means the volume is given by

$$
\int_{0}^{2} 2 \pi x\left(2 x-x^{2}\right) d x=2 \pi \int_{0}^{2} 2 x^{2}-x^{3} d x
$$

If instead we want to integrate $d y$, note that such a slice will be a "washer" with inner radius $x=y / 2$ and outer
 radius $x=\sqrt{y}$. This means we have the integral

$$
\int_{0}^{4} \pi(\sqrt{y})^{2}-\pi(y / 2)^{2} d y=\pi \int_{0}^{4} y-\frac{y^{2}}{4} d y
$$

(b) Evaluate the integral in (a).

Solution: For the first integral, we have

$$
2 \pi \int_{0}^{2} 2 x^{2}-x^{3} d x=\left.2 \pi\left(\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{0} ^{2}=2 \pi\left(\frac{16}{3}-\frac{16}{4}\right)=\frac{8 \pi}{3}
$$

The second integral gives

$$
\pi \int_{0}^{4} y-\frac{y^{2}}{4} d y=\left.\pi\left(\frac{y^{2}}{2}-\frac{y^{3}}{12}\right)\right|_{0} ^{4}=\pi\left(\frac{16}{2}-\frac{64}{12}\right)=\frac{8 \pi}{3}
$$

Of course, they both evaluate to the same value.

15 pts 6. Determine the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(4 x-1)^{n}}{\sqrt{n+5}}$. Don't forget to establish convergence or divergence at the endpoints!

Solution: First, we apply the ratio test, calculating $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$:

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(4 x-1)^{n+1}}{\sqrt{n+1+5}} \cdot \frac{\sqrt{n+5}}{(-1)^{n}(4 x-1)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\sqrt{n+5}}{\sqrt{n+6}} \cdot(4 x-1)\right|=|4 x-1|
$$

Solution: (continued) So, for the series to converge, we must have $|4 x-1|<1$, that is, $-1<4 x-1<1$. Adding 1 to both sides yields $0<4 x<2$, or equivalently $0<x<\frac{1}{2}$. (If you prefer, observe that the center is $\frac{1}{4}$ and the radius of convergence is also $\frac{1}{4}$.)
Now we need to establish what happens at the endpoints.
When $x=0$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n}}{\sqrt{n+5}}$, or, equivalently, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+5}}$. This series diverges. If you like, you can use the integral test, or we can use limit comparison with a p-series with $p=1 / 2$:

$$
\lim _{n \rightarrow \infty} \frac{1 / \sqrt{n+5}}{1 / \sqrt{n}}=1
$$

so the two series do the same thing. Since $\sum 1 / \sqrt{n}$ diverges, so does the original.
When $x=1 / 2$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+5}}$. This is an alternating series. Since the terms are decreasing and $\lim 1 / \sqrt{n+5}=0$, the series converges.

Consequently, the interval of convergence is $\left(0, \frac{1}{2}\right]$.
7. For each of the infinite sums below, state whether it converges or diverges. Justify your answer completely.
(a) $\sum_{n=1}^{\infty} \frac{\ln (2 n)}{n}=\ln 2+\ln 2+\frac{\ln 6}{3}+\ldots$

Solution: Diverges by the integral test, or by comparison with $\sum \frac{1}{n}$ (The series is larger than a divergent series, and so diverges).
(b) $\sum_{n=3}^{\infty} \frac{n^{2}+5}{\left(n^{2}-1\right)\left(n^{2}-4\right)}=\frac{7}{20}+\frac{7}{60}+\frac{1}{16}+\ldots$

Solution: Since $\frac{n^{2}+5}{\left(n^{2}-1\right)\left(n^{2}-4\right)}<\frac{n^{2}}{n^{4}}=\frac{1}{n^{2}}$, the series converges by comparison with a convergent p-series $(p=2)$.
(c) $\sum_{n=5}^{\infty} \frac{5^{n}-3^{n}}{7^{n+2}}=\frac{2882}{82543}+\frac{304}{117649}+\frac{75938}{40353607}+\ldots$

Solution: Observe that $\sum \frac{5^{n}-3^{n}}{7^{n+2}}=\frac{1}{49}\left(\sum \frac{5^{n}}{7^{n}}-\sum \frac{3^{n}}{7^{n}}\right)$. So this is the difference of two convergent geometric series (the ratios are both less than one), and it converges (to $\left.\frac{1}{49}\left(\frac{7}{2}-\frac{7}{4}\right)=1 / 28\right)$.
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{\sqrt{n^{2}+4}}=\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{2}}+\frac{3}{\sqrt{13}}-\ldots$

Solution: This diverges, since the limit of a_{n} is not zero.

15 pts 8. Jack has a goose that lays golden eggs, one each day. Unfortunately each egg is only $4 / 5$ the mass of the previous one. Jack needs to obtain 120 grams of gold to ransom his sister from the evil monkey-king. If the first egg weighed 20 grams, does Jack ever get enough gold? If so, how long must he wait? Justify your answer.

Solution: The total amount of gold (in grams) that Jack will get is

$$
20+20 \cdot \frac{4}{5}+20 \cdot \frac{4^{2}}{5^{2}}+20 \cdot \frac{4^{3}}{5^{3}}+\ldots=20 \sum_{n=0}^{\infty} \frac{4^{n}}{5^{n}}
$$

This is a geometric series, and the sum is

$$
\frac{20}{1-4 / 5}=\frac{20}{1 / 5}=100
$$

Sadly, no matter how long he waits, he will never even get 100 grams of gold.

15 pts 9. Recall that Hooke's law says that the amount of force required to stretch a spring x units beyond its natural length is $k x$, where k is a constant depending on the spring.
A giant spring designed to hold the gates of Mordor closed has a natural length of 10 meters. If it takes 1800 Joules 1 to stretch the spring from 10 meters to a length of 13 meters, how much work will it take to stretch the spring from 13 meters to a length of 15 meters?

Solution: First, we need to determine the spring constant. Since the amount of work to stretch the spring from 10 to 13 is 1800 J , we have

$$
1800=\int_{0}^{3} k x d x=\left.\frac{k x^{2}}{2}\right|_{0} ^{3}=\frac{9 k}{2}
$$

and so $k=1800 \cdot 2 / 9=400$. (We integrated from 0 to 3 because the natural length of the spring is 10 meters).
Now the required work to stretch the spring from 13 to 15 is given by

$$
\int_{3}^{5} 400 x d x=\left.\frac{400 x^{2}}{2}\right|_{3} ^{5}=200(25-9)=200 \cdot 16=3200 \mathrm{~J}
$$

[^0]
[^0]: ${ }^{1}$ A Joule is the amount of work needed to apply a force of 1 Newton over the distance of 1 meter.

