MAT 132, Calculus II

December 20, 2006

The exam will consist in ten problems like the ones below. Each problem will worth between 9 and 12 points.

Show all work to get full credit; a correct answer with incorrect justification will not get credit.

- 1. Evaluate the integrals
 - (a) $\int \tan^2(x) \sec^4(x) dx$
 - (b) $\int \frac{x^2-1}{x^3+x} dx$
 - (c) $\int \sqrt{x} \ln(x) dx$
 - (d) $\int x^3 \ln(x) dx$
 - (e) $\int \tan(10x) dx$ (the removed exercise $\int \frac{\sin(x)}{(1+x^2)} dx$ was beyond the limits of the course)
 - (f) $\int x \sin^2(x) \cos(x) dx$
- 2. A function f defined on $0 \le x \le 40$ has the following values

x	f(x)
0	2
10	2.5
20	4.5
30	5
40	0

- (a) (6 points) Approximate $\int_0^{40} f(x) dx$ using the trapezoid rule with 2 (two) equal subdivisions.
- (b) (6 points) Approximate the integral using Midpoint's rule and with 2 (two) equal subdivisions.
- 3. Consider the curve defined by the parametric equations $x = t^2$, $y = t^3$.
 - (a) Set up, but do not evaluate an integral that represents the arc length of the curve for $10 \le t \le 20$.
 - (b) Find the arc length of the curve when $1/3 \leq t \leq 1/2$
- 4. Draw the directions field of the differential equation $\frac{dy}{dx} = y^2$. Use to sketch two solutions curves, one with y(1) = 1 and the other y(0) = 0
- 5. Each of the diagrams below depicts the direction fields corresponding to a differential equation of the form $\frac{dy}{dx} = f(x, y)$.

$\begin{array}{c} 230 \\ 116 \\$	
2.0- VI.6- VI.7- VI.	

- (a) Which one diagrams correspond to the function f(x, y) = x y? (Justify your answer.)
- (b) In the diagram you found in a. sketch the solution of the initial value problem , $\frac{dy}{dx} = f(x, y), \quad y(-1) = 0.$
- 6. Sketch the region bounded by the given curves, and find the volume of the solid of revolution that is formed when the region is revolved around the x-axis.
 - (a) $y = \sqrt{x}, y = 0, x = 1.$
 - (b) $y = 1 + e^x$, y = 0, x = 0, x = 1.
- 7. (a) Sketch the graph of the region determined by the curve $y = \cos(x)$, between x = 0 and $x = \frac{\pi}{2}$.
 - (b) Compute the area of this region.
 - (c) Compute the volume of the solid obtained by revolving this region about the x-axis.
 - (d)
- 8. Suppose that y(x) satisfies the differential equation $y' = \frac{y^2}{x}$
 - (a) Give a general solution.
 - (b) If y(x) is a solution and y(1) = 0, find y(x).
- 9. Consider the differential equation $\frac{dy}{dx} = y x^2$
 - (a) Determine which one of the following functions is a solution, explaining your reasoning (C is a constant).
 - i. $y(x) = \cos(Cx)$ ii. $y(x) = 2 + 2x + Cx^2 + e^x$
 - iii. $y(x) = 2 + 2x + x^2 + Ce^x$
 - (b) Solve the initial value problem $\frac{dy}{dx} = y x^2$, y(0) = 3.
- 10. Let $\{a_n\}_{n\leq 1}$ be a sequence with $a_n = \frac{\cos(n)}{2^n}$.
 - (a) List the first, third and tenth term of the sequence.
 - (b) Determine whether the sequence if convergent and if so, find the limit.
 - (c) Determine wether the series $\sum_{n=1}^{\infty} a_n$ is convergent.
- 11. Write the infinite repeating decimal 0.55555... as a geometric series. Use the formula for the sum of a geometric series to express this as a fraction (ratio of two whole numbers).
- 12. Write the infinite repeating decimal 0.17171717... as a geometric series. Use the formula for the sum of a geometric series to express this as a fraction (ratio of two whole numbers).

13. Determine if the following series converge or diverge. Justify.

(a)
$$\sum_{n=1}^{\infty} \frac{1+n^2 2^{-n}}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{2n+1}{n^3+n}$ (c) $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ (d) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ (d)

14. Let $f(x) = \frac{1}{1-x}$.

- (a) Write down a power series which equals f(x) for all |x-3| < 1.
- (b) Write down a power series which equals (x-3)f'(x) for all |x-3| < 1.
- 15. (a) Write $f(x) = \frac{1}{2+x^2}$ as a geometric series.
 - (b) Use the power series representation of f to find calculate the twentieth derivative of f at x = 0.
- 16. Find exactly for which values of x each of the following power series converges.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{e^n} (x-3)^n$$
 (b) $\sum_{n=1}^{\infty} \frac{\ln n}{\ln(n+1)} x^n$ (c) $\sum_{n=1}^{\infty} \frac{3^n}{n^3} x^n$

- 17. Find the exact value of $\sum_{n=0}^{\infty} \frac{2^n}{n!}$
- 18. Evaluate the indefinite integral $\int \frac{\sin(x)}{x}$ as an infinite series
- 19. (a) Find all the real functions y(x) which satisfy the equation y'' + y' + 2y = 0.
 - (b) Find all the real solutions passing though the point (0,1). How many of these can you find?
 - (c) Find all the real solutions whose derivative passes through the point (0,-1).