The exam will consist in ten problems like the ones below. Each problem will worth between 9 and 12 points.

Show all work to get full credit; a correct answer with incorrect justification will not get credit.

1. Evaluate the integrals
(a) $\int \tan ^{2}(x) \sec ^{4}(x) d x$
(b) $\int \frac{x^{2}-1}{x^{3}+x} d x$
(c) $\int \sqrt{x} \ln (x) d x$
(d) $\int x^{3} \ln (x) d x$
(e) $\int \tan (10 x) d x$ (the removed exercise $\int \frac{\sin (x)}{\left(1+x^{2}\right)} d x$ was beyond the limits of the course)
(f) $\int x \sin ^{2}(x) \cos (x) d x$
2. A function f defined on $0 \leq x \leq 40$ has the following values

x	$f(x)$
0	2
10	2.5
20	4.5
30	5
40	0

(a) (6 points) Approximate $\int_{0}^{40} f(x) d x$ using the trapezoid rule with 2 (two) equal subdivisions.
(b) (6 points) Approximate the integral using Midpoint's rule and with 2 (two) equal subdivisions.
3. Consider the curve defined by the parametric equations $x=t^{2}, y=t^{3}$.
(a) Set up, but do not evaluate an integral that represents the arc length of the curve for $10 \leq t \leq 20$.
(b) Find the arc length of the curve when $1 / 3 \leq t \leq 1 / 2$
4. Draw the directions field of the differential equation $\frac{d y}{d x}=y^{2}$. Use to sketch two solutions curves, one with $y(1)=1$ and the other $y(0)=0$
5. Each of the diagrams below depicts the direction fields corresponding to a differential equation of the form $\frac{d y}{d x}=f(x, y)$.

(a) Which one diagrams correspond to the function $f(x, y)=x-y$? (Justify your answer.)
(b) In the diagram you found in a. sketch the solution of the initial value problem, $\frac{d y}{d x}=f(x, y), \quad y(-1)=0$.
6. Sketch the region bounded by the given curves, and find the volume of the solid of revolution that is formed when the region is revolved around the x-axis.
(a) $y=\sqrt{x}, y=0, x=1$.
(b) $y=1+e^{x}, y=0, x=0, x=1$.
7. (a) Sketch the graph of the region determined by the curve $y=\cos (x)$, between $x=0$ and $x=\frac{\pi}{2}$.
(b) Compute the area of this region.
(c) Compute the volume of the solid obtained by revolving this region about the x-axis.
(d)
8. Suppose that $y(x)$ satisfies the differential equation $y^{\prime}=\frac{y^{2}}{x}$
(a) Give a general solution.
(b) If $y(x)$ is a solution and $y(1)=0$, find $y(x)$.
9. Consider the differential equation $\frac{d y}{d x}=y-x^{2}$
(a) Determine which one of the following functions is a solution, explaining your reasoning (C is a constant).
i. $y(x)=\cos (C x)$
ii. $y(x)=2+2 x+C x^{2}+e^{x}$
iii. $y(x)=2+2 x+x^{2}+C e^{x}$
(b) Solve the initial value problem $\frac{d y}{d x}=y-x^{2}, y(0)=3$.
10. Let $\left\{a_{n}\right\}_{n \leq 1}$ be a sequence with $a_{n}=\frac{\cos (n)}{2^{n}}$.
(a) List the first, third and tenth term of the sequence.
(b) Determine whether the sequence if convergent and if so, find the limit.
(c) Determine wether the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
11. Write the infinite repeating decimal $0.55555 \ldots$ as a geometric series. Use the formula for the sum of a geometric series to express this as a fraction (ratio of two whole numbers).
12. Write the infinite repeating decimal $0.17171717 \ldots$ as a geometric series. Use the formula for the sum of a geometric series to express this as a fraction (ratio of two whole numbers).
13. Determine if the following series converge or diverge. Justify.
(a) $\sum_{n=1}^{\infty} \frac{1+n^{2} 2^{-n}}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{3}+n}$
(c) $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$
(d) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
(d)
14. Let $f(x)=\frac{1}{1-x}$.
(a) Write down a power series which equals $f(x)$ for all $|x-3|<1$.
(b) Write down a power series which equals $(x-3) f^{\prime}(x)$ for all $|x-3|<1$.
15. (a) Write $f(x)=\frac{1}{2+x^{2}}$ as a geometric series.
(b) Use the power series representation of f to find calculate the twentieth derivative of f at $x=0$.
16. Find exactly for which values of x each of the following power series converges.
(a) $\quad \sum_{n=1}^{\infty} \frac{n}{e^{n}}(x-3)^{n}$
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{\ln (n+1)} x^{n}$
(c) $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}} x^{n}$
17. Find the exact value of $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$
18. Evaluate the indefinite integral $\int \frac{\sin (x)}{x}$ as an infinite series
19. (a) Find all the real functions $y(x)$ which satisfy the equation $y^{\prime \prime}+y^{\prime}+2 y=0$.
(b) Find all the real solutions passing though the point $(0,1)$. How many of these can you find?
(c) Find all the real solutions whose derivative passes through the point $(0,-1)$.

