Solutions to Practice Exam 2

2.2 Each cross section parallel to the base is an isosceles right triangle.

The strategy is to sum up the volumes of each cross section with thickness Δh. $V \approx \sum_{i=1}^{n}$ Volume of cross section at height h_{i} $V \approx \sum_{i=1}^{n} \frac{1}{2} w_{i}^{2} \Delta h$

3
The height has been measured upward from the base of the pyramid.
Using similar triangles, we get $\frac{w}{3}=\frac{12-h}{12} \Rightarrow w=\frac{1}{4}(12-h)$
$V \approx \sum_{i=1}^{n} \frac{1}{2} w_{i}^{2} \Delta h=\sum_{i=1}^{n} \frac{1}{2}\left(\frac{1}{4}\left(12-h_{i}\right)\right)^{2} \Delta h=\sum_{i=1}^{n} \frac{1}{32}\left(12-h_{i}\right)^{2} \Delta h$
So, $V=\lim _{\substack{n \rightarrow \infty \\ \Delta h \rightarrow 0}} \sum_{i=1}^{n} \frac{1}{32}\left(12-h_{i}\right)^{2} \Delta h=\frac{1}{32} \int_{0}^{12}(12-h)^{2} d h=18$.
If the height is measured downward referring to the top of the pyramid as zero, using similar triangles, one would get $\frac{w}{3}=\frac{h}{12} \Rightarrow w=\frac{1}{4} h$.
Then, $V \approx \sum_{i=1}^{n} \frac{1}{2} w^{2} \Delta h=\sum_{i=1}^{n} \frac{1}{2}\left(\frac{1}{4} h\right)^{2} \Delta h=\sum_{i=1}^{n} \frac{1}{32} h^{2} \Delta h$.
So, $V=\lim _{\substack{n \rightarrow \infty \\ \Delta h \rightarrow 0}} \sum_{i=1}^{n} \frac{1}{32} h^{2} \Delta h=\frac{1}{32} \int_{0}^{12} h^{2} d h=18$.
2.3 The parabola and the line intersect at the points $(-1,1)$ and $(1,1)$.

Each cross section perpendicular to the \boldsymbol{y}-axis is a square.
The strategy is to sum up the volumes of each cross section with thickness Δy.
The length of each side of the square is $w=2 \cdot \sqrt{y}$
$V \approx \sum$ Volume of cross section at height y_{i}
$V \approx \sum$ Area $_{y_{i}} \Delta y=\sum w^{2} \Delta y=\sum(2 \sqrt{y})^{2} \Delta y=\sum 4 y \Delta y$
So, $V=4 \int_{0}^{1} y d y=2$.

Notice that $r=1-\sin x$.

$$
\begin{aligned}
& V \approx \sum \pi r^{2} \Delta x=\sum \pi(1-\sin x)^{2} \Delta x . \\
V= & \pi \int_{0}^{\frac{\pi}{2}}\left(1-2 \sin x+\sin ^{2} x\right) d x=\left.\pi \cdot\left[x+2 \cos x+\frac{1}{2}(-\sin x \cos x+x)\right]\right|_{0} ^{\frac{\pi}{2}}=\frac{\pi(3 \pi-8)}{4}
\end{aligned}
$$

2.5

$$
\begin{aligned}
& V \approx \sum \pi r^{2} \Delta x=\sum \pi\left(\sqrt{1-\frac{x^{2}}{9}}\right)^{2} \Delta x=\sum \pi\left(1-\frac{x^{2}}{9}\right) \Delta x \\
& V=\pi \int_{-3}^{3}\left(1-\frac{x^{2}}{9}\right) d x=2 \pi \cdot \int_{0}^{3}\left(1-\frac{x^{2}}{9}\right) d x=4 \pi
\end{aligned}
$$

2.8

$$
\begin{aligned}
\text { work } & \approx \sum_{i=1}^{n} \text { work on slice at height } h_{i} \\
& \approx \sum_{i=1}^{n} \underbrace{\left(7-h_{i}\right.}_{\text {distance }}) \cdot \underbrace{\delta \cdot \pi \cdot 2^{2} \Delta h}_{\text {force }} \quad\left(\mathrm{ft} \cdot \frac{\mathrm{lbs}}{\mathrm{ft}^{3}} \cdot \mathrm{ft}^{3}=\mathrm{ft} \cdot \mathrm{lbs}\right) \\
& \approx \sum_{i=1}^{n} 200 \pi\left(7-h_{i}\right) \Delta h \\
\text { work } & =200 \pi \int_{0}^{5}(7-h) d h=4500 \pi \mathrm{ft} \cdot \mathrm{lbs}
\end{aligned}
$$

2.9 work $\approx \sum_{i=1}^{n}$ work to raise the chain, with length $y_{i}+3 \mathrm{ft}$, vertically $\Delta y \mathrm{ft}$

$$
\approx \sum_{i=1}^{n} \underbrace{\delta\left(y_{i}+3\right)}_{\text {force (weight) }} \cdot \underbrace{\Delta y}_{\text {distance }} \quad\left(\frac{\mathrm{bss}}{\mathrm{ft}} \cdot \mathrm{ft} \cdot \mathrm{ft}=\mathrm{ft} \cdot \mathrm{lbs}\right)
$$

work $=5 \int_{0}^{17}(y+3) d y=997.5 \mathrm{ft} \cdot \mathrm{lbs}$
$2.10 \frac{\Delta h}{\Delta t}=1 \frac{\mathrm{ft}}{\mathrm{sec}}$ and $\frac{\Delta F}{\Delta t}=-20 \frac{\mathrm{lbs}}{\mathrm{sec}}$. So, $\frac{\Delta F}{\Delta h}=-20 \frac{\mathrm{lbs}}{\mathrm{ft}}$. work $\approx \sum_{i=1}^{n}$ work to raise the bucket, at height $h_{i} \mathrm{ft}$, vertically $\Delta h \mathrm{ft}$

$$
\approx \sum_{i=1}^{n} \underbrace{\left(1000-20 h_{i}\right)}_{\text {force (weight) }} \cdot \underbrace{\Delta h}_{\text {distance }} \quad\left(\left(\mathrm{lbs}-\frac{\mathrm{lbs}}{\mathrm{ft}} \cdot \mathrm{ft}\right) \cdot \mathrm{ft}=\mathrm{ft} \cdot \mathrm{lbs}\right)
$$

work $=\int_{0}^{30}(1000-20 h) d h=21,000 \mathrm{ft} \cdot \mathrm{lbs}$
$2.12 y=f(x)=\frac{2}{3} x^{\frac{3}{2}} . f^{\prime}(x)=x^{\frac{1}{2}}$.
Arclength $=\int_{0}^{3} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{0}^{3} \sqrt{1+x} d x=\frac{14}{3}$.
$2.15 A=\int_{\frac{3 \pi}{4}}^{\pi} \frac{1}{2} r^{2} d \theta=\frac{1}{2} \int_{\frac{3 \pi}{4}}^{\pi}(\sqrt{\theta})^{2} d \theta=\frac{7 \pi^{2}}{64}$.
2.16 (a) $A=\int_{0}^{\frac{\pi}{3}} \frac{1}{2} r^{2} d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{3}}(2 \sin (3 \theta))^{2} d \theta=2 \int_{0}^{\frac{\pi}{3}} \sin ^{2}(3 \theta) d \theta$

$$
A=\left.2 \cdot\left(\frac{1}{3} \cdot \frac{1}{2}(-\sin (3 \theta) \cos (3 \theta)+3 \theta)\right)\right|_{0} ^{\frac{\pi}{3}}=\frac{\pi}{3}
$$

(b) $x=r \cos \theta=2 \sin (3 \theta) \cos \theta$ and $y=r \sin \theta=2 \sin (3 \theta) \sin \theta$
$\frac{d x}{d \theta}=6 \cos (3 \theta) \cos \theta-2 \sin (3 \theta) \sin \theta$ and $\frac{d y}{d \theta}=6 \cos (3 \theta) \sin \theta+2 \sin (3 \theta) \cos \theta$

$$
\frac{d y}{d x}=\frac{d y}{d \theta} \cdot \frac{d \theta}{d x}
$$

$$
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{6}}=\left.\frac{6 \cos (3 \theta) \sin \theta+2 \sin (3 \theta) \cos \theta}{6 \cos (3 \theta) \cos \theta-2 \sin (3 \theta) \sin \theta}\right|_{\theta=\frac{\pi}{6}}=-\sqrt{3}
$$

(c) $\frac{1}{2} \int_{\frac{\pi}{18}}^{\frac{5 \pi}{18}}\left(4 \sin ^{2}(3 \theta)-1\right) d \theta$
2.17 (a) $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{4 n^{2}+3 n}{2 n^{2}+3 n+1}=\lim _{n \rightarrow \infty} \frac{4 n^{2}+3 n}{2 n^{2}+3 n+1} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{4+\frac{3}{n}}{2+\frac{3}{n}+\frac{1}{n^{2}}}=2$
(b) $\quad \lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(3+\frac{(-1)^{n}}{\sqrt{n}}\right)=3+\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\sqrt{n}}=3$
(c) $\quad \lim _{n \rightarrow \infty} \frac{n^{2}}{2^{n}} \stackrel{\text { L.R. }}{=} \lim _{n \rightarrow \infty} \frac{2 n}{2^{n} \ln 2} \stackrel{\text { L.R. }}{=} \lim _{n \rightarrow \infty} \frac{2}{2^{n}(\ln 2)^{2}}=0$
2.18 (a) $3-\frac{3}{2}+\frac{3}{2^{2}}-\frac{3}{2^{3}}+\frac{3}{2^{4}}-\ldots=3+3\left(\frac{-1}{2}\right)+3\left(\frac{-1}{2}\right)^{2}+3\left(\frac{-1}{2}\right)^{3}+3\left(\frac{-1}{2}\right)^{4}+\ldots$

$$
=3 \sum_{n=0}^{\infty}\left(\frac{-1}{2}\right)^{n}=\frac{3}{1-\left(\frac{-1}{2}\right)}=2
$$

(b) $\quad \sum_{n=1}^{21} 3 a^{2 n}=3 a^{2}+3 a^{4}+3 a^{6}+\ldots+3 a^{42}=3 a^{2}\left(1+a^{2}+a^{4}+a^{6}+\ldots+a^{40}\right)$

$$
=3 a^{2}\left(1+\left(a^{2}\right)^{1}+\left(a^{2}\right)^{2}+\left(a^{2}\right)^{3}+\ldots+\left(a^{2}\right)^{20}\right)=3 a^{2} \cdot \frac{1-\left(a^{2}\right)^{21}}{1-a^{2}}
$$

Or, $\sum_{n=1}^{21} 3 a^{2 n}=3 a^{2} \sum_{n=0}^{20}\left(a^{2}\right)^{n}=3 a^{2} \cdot \frac{1-\left(a^{2}\right)^{21}}{1-a^{2}}$.

No calculators will be permitted at the exam.
3.1 A ping-pong ball is launched straight up, rises to a height of 15 feet, then falls back to the launch point and bounces straight up again. It continues to bounce, each time reaching a height 90% of the height reached on the previous bounce. Find the total distance that the ball travels.

The ball has gone 30 ft at the first return to the launch point, then $2(15)(.9)$ more feet at the second return, $2(15)(.9)(.9)$ at the third return, etc. The total distance is then

$$
30+30(.9)+30(.9)^{2}+30(.9)^{3}+\cdots=\frac{30}{1-.9}=300 \text { feet. }
$$

3.2 Use the integral test to determine the convergence of the following series:
a) $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$
b) $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$
a) Series converges if and only the improper integral $\int_{1}^{\infty} x^{-3 / 2} d x$ converges. $\int_{1}^{\infty} x^{-3 / 2} d x=2<\infty$ so series converges.
b) Series converges if and only the improper integral $\int_{1}^{\infty} x e^{-x} d x$ converges. $\int_{1}^{\infty} x e^{-x} d x=2 / e<\infty$ (integrate by parts and use L'Hopital's rule) so series converges.
3.3 Determine if the following series converge or diverge. Give your reasoning using complete sentences.
a) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
b) $\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$
a) Series converges if and only the improper integral $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$ converges. Integrate by parts and use L'Hopital's rule to see that this integral converges to 1 so series converges. Alternately, $\ln x<x^{1 / 2}$ when x is large since by L'Hopital's rule $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{1 / 2}}=0$, so $\frac{\ln x}{x^{2}} \leq \frac{1}{x^{3 / 2}}$ so $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$ is convergent by comparison with the integral in problem 2a) above
b) $\frac{n!}{(n+2)!}=\frac{1}{(n+2)(n+1)}<\frac{1}{n^{2}}$ so given series converges by comparison with p-series with $p=2$ which is convergent.
3.4 For each of the following items a) and b) choose a correct conclusion and reason from among the choices (R), (C), (I) below and provide supporting computation. For example, if you choose (R) calculate and interpret a suitable ratio.
(R) Converges by the ratio test. (C) Diverges by a p-series comparison.
(I) Converges by the integral test.
a) $\sum_{n=1}^{\infty} \frac{n^{2} 3^{n}}{n 4^{n}}$
b) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
a) (R). The ratio $\frac{a_{n+1}}{a_{n}}=\frac{n+1}{n} \frac{3}{4} \rightarrow \frac{3}{4}<1$.
b) (C). For $n>3 \ln n>1$ so the series diverges by comparison with the p-series with $p=1$.
3.5 a) Which of the following correctly classifies the series $\sum_{n=1}^{\infty} \frac{3^{n}+4^{n}}{e^{n}}$ and gives a valid reason? Circle your answer. No other reason required.
i) Diverges: $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
ii) Converges: sum of two convergent geometric series.
iii) Converges: Comparison test with geometric series with ratio $3 / e$.
iv) Converges: Comparison test with geometric series with ratio $e / 4$.
v) Diverges: constant multiple of the harmonic series.
b) Which of the following correctly classifies the series $\sum_{n=1}^{\infty} \frac{n^{3}}{5+n^{4}}$ and gives a valid reason? Circle your answer. No other reason required.
i) Diverges: $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
ii) Converges: Ratio test.
iii) Converges: Comparison test with a p-series, $p>1$.
iv) Diverges: Ratio test.
v) Diverges: Comparison or limit comparison with the harmonic series.
a) Answer: i)
b) Answer: v)
3.6 Determine if the following series converge or diverge. Give your reasoning using complete sentences.
a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}$
b) $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{\ln n}$
a) An alternating series, but the terms do not approach 0 (they approach 1) so divergent.
b) An alternating series with terms decreasing to 0 so convergent.
3.7 a) Find the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}(x-3)^{n}$
b) Find the radius of convergence for $\sum_{n=1}^{\infty} \frac{n!}{(2 n)!} x^{n}$
a)
$\left|\frac{\frac{1}{(n+1) 2^{n+1}}(x-3)^{n+1}}{\frac{1}{n 2^{n}}(x-3)^{n}}\right|=\left|\frac{n 2^{n}(x-3)^{n+1}}{(n+1) 2^{n+1}(x-3)^{n}}\right|=\frac{1}{2} \cdot \frac{n}{n+1}|x-3| \rightarrow \frac{1}{2}|x-3|$ as $n \rightarrow \infty . \frac{1}{2}|x-3|<1$ for $|x-3|<2$, that is, $1<x<5$ so series converges if $1<x<5$ and diverges if $x>5$ or $x<1$. At $x=5$ the series becomes the harmonic series $\sum_{n} \frac{1}{n}$ which diverges, but at $x=1$ it becomes the alternating series $\sum_{n}(-1)^{n} \frac{1}{n}$ which converges. The interval of convergence is therefore $[1,5)$.
b)

$$
\left|\frac{\frac{(n+1)!}{(2 n+2!} x^{n+1}}{\frac{n!}{(2 n)!} x^{n}}\right|=\frac{n+1}{(2 n+2)(2 n+1)}|x| \rightarrow 0<1
$$

for every x when $n \rightarrow \infty$. Thus the series converges for all x and the radius of convergence is ∞.

