MAT 132 FINAL EXAM

NAME: §w’\\ O)\)‘S SECTION: 2002

You have 2% hours to complete this exam. You may NOT use a cal-
culator. You may NOT use any books or notes. Please SHOW YOUR
WORK and EXPLAIN YOUR REASONING wherever possible. It
might be helpful to use the following trigonometric identities:

sin?(z) + cos®(z) =1

sin?(x) = %(1 — cos(2x))

4

cos?(2) = 5(1 + cos(2x))
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1 2 3 4 5 6 7 8 9

15 pts | 15 pts | 15 pts | 15 pts | 20 pts | 15 pts | 10 pts | 15 pts | 15 pts

Score

10 11 12 13 14 15 16 17 Total

10 pts | 20 pts | 20 pts | 15 pts | 30 pts | 25 pts | 25 pts | +20EC pts | 280 pts

Score
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1. (15 points) Evaluate [ 25 - In(x) dx. = \n
(hint: use integration by parts) u' \ x | )(b
du = zdx V=7

=0 st\nxclx = ‘l(;xqr\x ~ g'—éx@(i)dx
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2. (15 points) Evaluate [ sin(2x) dx.

Ll = 2% IF X
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du = 2dx =0
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3. {15 points] Evaluate | "3 + 5ddx
R A
du. = (2x3 dx

§RuETedx = % i du
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4. (15 points) Evaluate the improper integral Jlu-.- de™" dx.

Sﬂgéx&x = \\M &I:SEZ;C{}(.

M Feco
WA
- lim (-3&-}‘\5
m 700
- Lh:-m (Hz)e‘,-m‘ 1 35



e O

5. (20 points) Find a fonction y(or) that satisfies the differential equa-
tion y' = xy and the initial value y{0) = 5.

d wHed X=0, tj':g
g = Ae
2> A=S.
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G. (15 points) Last year 1 planted chubarb in my garden and har-

vested 40 pounds of it, This yvear, 1 didn't plant any at all, but

the rhubarh grew back anvway, and 1 harvested 30 ponnds. [ fg-

ure this pattern will continue; every vear's harvest will be T3%

of the previous vear's havvest. 1 this pattern continues forever,

what is the total vield {in pounds of rhubarkb)?
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7. (10 points) Write an integral that equals the arclength of the graph
of y(x) = In(z) between = 1 and 2 = 3. You do NOT need to

SOlVe thls integl“dl, RRC- LENQ“‘ = S b l + [‘P l(x)]z d x-
Q

SJI (%) -~ dx

8. (15 points) Draw a slope-field for the differential equation
y' = y—1. Use it to sketch two solution curves, one with y(0) = 0.5
and one with y(0) = 1.5
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9. (15 points) Does the series Y >0, ) = @)

converge or diverge? Explain why.

m DWERGES  SI0CE for "’%

oo In(n)
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10. (10 points) Does Zfzz(—l)”m = m~ﬁ5+ﬁ~- -+ converge
or diverge? Explain why.

THIS 1S5 AN ALTEANATING SERIES .
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11. (20 points)Does the series | #10” converge of diverge? Ex- ‘
plain why.
n+ |
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12. (20 points) Find the radius of convergence and the interval of

ApPPLY RATIO TEST‘

n 00

convergence of the power series f(z) = > o (& (z — 1)™
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13. (15 points) Use the Maclaurin series for sin(x) (which you should Xe (_. \ B)
have memorized) to find the 10th degree Taylor polynomial for )

sin(z?) at a = 0.
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14. (30 points) Find the Taylor series for the function f(z) = =
a = 1. Do this in three different ways:

at

(a) From the general formula (without using any Taylor series
which you have memorized)

£0=x'  RW=1

-2 '

plo=-x " B(y=-l
o= 260 Bn=2  FL =
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(b) Using the Taylor series: In(z) = >~ “——(z — 1)™
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(c¢) Starting with the Maclaurin series for ﬁ (which you should
have memorized), and making a substitution. oo i
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15. (25 points) Newton's Law of cooling states that the rate of cooling
of an object is proportional to the temperature difference hetween
the object and its surroundings. [ have just poured a cup of 100°F
coffee in a room where the temperature is 50°F. Let f(t) denote
the coffee temperature ¢ hours after I poured it.

(a) Write a differential equation and initial condition that f(¢)
satisfies.

ple)= K (F@) - 5p)
f(o) =100

(b) Solve the initial value problem. assuming the coffee tempera-
ture is initially dropping at a rate of 40 degrees per hour (that
is, f'(0) = —40).
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16, (25 points)
(o) Sketel o pictwee of the region above the re-axis, umder the
graph of fir) = sinlx), amnd between ¢ =0 el ¢ = 7.

() Compute the area of this region.

-
3 51:1(;’}(1: = =(P5X
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{e] Compute the volume of the solid ohtained by revolving this
region about the r-axis.
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17. (EXTRA CREDIT - 20 points] 1 lift water from a 0 oot I]l'l'].r
well by means of a bucket attached to a rape, When the bucket is
full of water. it weighs 30 pounds. But the bucket has a leak that
cawses it to lose water at a rate of —" pound for each foot that |
raise the bucket. Neglecting the weight of the rope, find the work
done {in foct-pounds) i raising the (mitially fall) bocket from
the bottom of the well to the top of the well.

T r“’[‘ THe wokk TONE (5 THE
Db |uTEGRAL oF THe FoReE  ousk THE

4o TIsTRLGE . LETS LeT |, B6 THe
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U (s0  o<h<4HB) 4w w(L) Be
THE WEIGHT oF THE TSUCKEF AT HSIGHT I .

™5, W(e) = B0 J SE  IT oSS
w (k)= 30" (g)h [ Y Wb PER FooT

THeX) THeE WOORK IS

| (20-2) dh

o

= 200 — Ve - leos  FT-PeunPs

Since the units are in pounds, which is a force, we don't need to multiply by g.



