2. 12 points Find the Maclaurin series of each of the given functions. I suggest you use a familiar power series as your starting point.
(a) $e^{3 x^{2}}$
(b) $\frac{1}{1+4 x}$
(c) $\sin 2 x$
3. 12 points For each of the series below, decide if it converges or diverges. You must justify your answer to receive full credit.
(a) $\sum_{n=1}^{\infty} \frac{2^{n}}{5^{n}+3^{n}}=\frac{1}{4}+\frac{2}{17}+\frac{1}{19}+\frac{8}{353}+\ldots$
(b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}=\frac{1}{2 \ln 2}+\frac{1}{3 \ln 3}+\frac{1}{4 \ln 4}+\ldots$
(c) $\sum_{n=0}^{\infty} \frac{10^{n}}{n!}=1+5+\frac{500}{3}+\frac{1250}{3}+\ldots$
4. 16 points Let $f(x)=x^{1 / 3}$.
(a) Find the Taylor polynomial of degree 2 centered at $a=8$ for $f(x)$.
(b) If the result of the previous part is used to estimate $9^{1 / 3}$, what is the error (according to Taylor's theorem)?
