Name:	
I dutie.	

Id: _____

2. 12 points Find the Maclaurin series of each of the given functions. I suggest you use a familiar power series as your starting point.

(a)
$$e^{3x^2}$$
 Since $e^{X} = \sum_{n=1}^{\infty} \frac{x^n}{n!} = \int + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$

NOW SUBSTITUTE 3x2 IN FOR X IN THE ABOUT

$$e^{3x^2} = \sum_{n=0}^{\infty} \frac{(3x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{3^n x^{2n}}{n!} = 1 + 3x^2 + \frac{9}{2}x^4 + \frac{27}{6}x^6 + \cdots$$

(b)
$$\frac{1}{1+4x}$$
 $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1+x+x^2+x^3+\cdots$

 $\frac{1}{1+4x} = \frac{1}{1-(-4x)} \quad \text{So WE SUBSTITUTE} \quad -4x \quad \text{ABOVE}$ $\text{TO GET} \quad \frac{8}{1-(-4x)} = \frac{6}{1-(-1)^n} 4^n x^n = 1 - 4x + 16x^2 - 64x^3 + \cdots$

(c)
$$\sin 2x$$

 $\sin(x) = \sum_{n=0}^{\infty} -0 \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

SO BUBSTITUTING IN 2K, WE GET

$$\sum_{n=0}^{M} (-1)^{n} \frac{(2n+1)!}{(2n+1)!} = \sum_{n=0}^{M} (-1)^{n} \frac{2^{n+1}}{2^{n+1}} \frac{2^{n+1}}{2^{n+1}}$$

$$= 2x - \frac{8x^3}{3!} + \frac{32x^5}{5!} - \frac{128x^7}{7!} + \dots$$

Id:

3. | 12 points | For each of the series below, decide if it converges or diverges. You must justify your answer to receive full credit.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n}{5^n + 3^n} = \frac{1}{4} + \frac{2}{17} + \frac{1}{19} + \frac{8}{353} + \dots$$

CONVERGES. WE CAN COMPARE IT TO THE CONVERGENT GEO METRIL SERIES $\frac{2!}{5!} \left(\frac{2}{5}\right)^n$, Since $\frac{2^n}{5^n+3^n} < \frac{2^n}{5^n} = \left(\frac{2}{5}\right)^n$

(OR, IF YOU PREFER LIMIT COMPARISON)

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n} = \frac{1}{2 \ln 2} + \frac{1}{3 \ln 3} + \frac{1}{4 \ln 4} + \dots$$

 $\frac{1}{x \ln x} = \lim_{m \to \infty} \int_{2}^{\infty} \frac{1}{x \ln x} = \lim_{m \to \infty} \frac{1}{x \ln x} = \lim_{m \to \infty}$

$$\int_{2}^{x} \frac{dx}{x \ln x} = \lim_{m \to \infty} \int_{2}^{m} \frac{dx}{x \ln x}$$

$$\int_{2}^{x} \frac{dx}{x \ln x} = \lim_{m \to \infty} \int_{2}^{m} \frac{dx}{x \ln x}$$

$$\int_{2}^{x} \frac{dx}{x \ln x} = \lim_{m \to \infty} \int_{2}^{m} \frac{dx}{x \ln x}$$

$$\int_{2}^{x} \frac{dx}{x \ln x} = \lim_{m \to \infty} \int_{2}^{m} \frac{dx}{x \ln x}$$

$$\int_{2}^{\infty} \frac{dx}{x \ln x} = \lim_{m \to \infty} \int_{2}^{m} \frac{dx}{x \ln x}$$

$$= \lim_{m \to \infty} |n u| \lim_{l \to \infty} = \lim_{m \to \infty} \left(|n(|nM) - |n(|n2)| \right) = +\infty$$

$$= \lim_{m \to \infty} |n u| \lim_{l \to \infty} = \lim_{m \to \infty} \left(|n(|nM) - |n(|n2)| \right) = +\infty$$
So the series diverges

(c)
$$\sum_{n=0}^{\infty} \frac{10^n}{n!} = 1 + 5 + \frac{500}{3} + \frac{1250}{3} + \dots$$

USE THE RATIO TEST!

||v|| = ||v|

SINCE THE RATIO 15 0, THE SERIES CONVERGES.

DR RECOGNIZETHIS AS THE MACLAURIN SERIES

Name:	
maine:	

- 4. | 16 points | Let $f(x) = x^{1/3}$.
 - (a) Find the Taylor polynomial of degree 2 centered at a = 8 for f(x).

$$f(x) = x^{1/3} f(8) = 2$$

$$p'(x) = \frac{1}{3}x^{2/3} p'(8) = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$$

$$p''(x) = -\frac{2}{9}x^{-5/3} f''(8) = -\frac{2}{9} \cdot \frac{1}{32} = -\frac{1}{9 \cdot 16}$$

SO THE 2ND TAYLOR POLYNOMIAL IS
$$2 + \frac{1}{12}(x-8) - \frac{1}{18.16}(x-8)^{2}$$

(b) If the result of the previous part is used to estimate $9^{1/3}$, what is the error (according to Taylor's theorem)?

TAYLOR'S THEOREM SAYS THE ERROR WILL BE NO MORE THAN $\int \frac{f'''(c)}{3!}$ FOR SOME $\int \frac{f'''(c)}{27} = \frac{10}{27} \times \frac{3}{3}$ IS DECREASING, THE MAX WILL

OCCUR AT X=8, SO THE ERROR IS NO MORE THAN

27.28.31 WHICH IS PRETY GOOD.