1. (15 pts)

(a) Determine whether the following sequence converges. If it converges, find the limit.

$$a_n = \frac{n^3 + 4}{n^3 - 2n^2 + 4}$$

SINCE $\left(\lim_{n \to \infty} \left(\frac{n^3 + 4}{n^3 - 2n^2 + 4} \right) = 1$
THE SEQUENCE CONVERGES TO (

(b) Determine whether the following sequence converges. If it converges, find the limit.

$$a_n = \frac{n^2 + 3}{e^n}$$

en
WE CAN DO THIS A COUPLE OF WAYS.
$\lim_{n \to \infty} \frac{n^2 + 3}{15}$ is of the form $\frac{00}{00}$, so
N 700 P" WE COULD USE L'HOPITAL'S RULE
TWICE TO GET $\lim_{n \to \infty} \frac{2}{e^n} = 0$.
OBSERVE THATTHE TERMS ARE DECREASING OBSERVE THATTHE (SO BOUNDED BEDOW BY O)
AND HENCE CONVERGE. AND HENCE CONVERGE. TO CEE THAT THEY CONVERGE TO ZERD STILL
NEEDS SOME EFFORT FOR EXAMPLE L'HOPITHY
OR SHOW THAT NETS AS SMALL AS YOU CON LIKE FOR N BIG.
BUT THAT IS WORK AND I DONT WANT IU.

(c) Consider the sequence given by $a_1 = \sqrt{2}$, $a_2 = \sqrt{2a_1} = \sqrt{2\sqrt{2}}$, $a_3 = \sqrt{2a_2}$, ..., $a_{n+1} = \sqrt{2a_n}$. It is known that this sequence is monotonically increasing and bounded above. Is the sequence $\{a_n\}_n$ convergent? Justify your answer. If it converges, find the limit.

SINCE IT IS MONOTONE INCREASING AND
BOUNDED, IT MUST CONVERCE. TO SOME
LIMIT L. TO FIND L, NOTE
THAT I'M Q_n = I'M Q_n = L.
N=10 N-150 NON - NOTE
BUT Q_{n+1} =
$$\sqrt{2a_n}$$
, so
 $L = \lim_{n \to \infty} a_{n+1} = \sqrt{2\lim_{n \to \infty} a_n} = \sqrt{2L}$
IN L = $\sqrt{2L}$.
SQUARING BOTH SIDES GIVES L² = 2L, IC
L IS A SOLUTION TO L²-2L=0
 $L(L-2)=D$
SO L IS O OR2.
BUT SINCE Q_n=0 FOR ALL N, L=2.
J THE LIMIT IS 2

2. (15 pts)

(a) Determine whether the following series converges or diverges.

(d) Determine whether the following series converges of diverges.

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1} = \frac{1}{2} - \frac{2}{5} + \frac{3}{10} - \frac{4}{25} + \cdots$$
THIS IS AN ACTER NATING SERIES.
NOTE THAT THE TERMS ARE DECREASING
IN ABS. VALUE
AND $\int \lim_{N \to \infty} \frac{n}{n^2 + 1} = 0$.
SO THIS CONVERCES BY THE ALT, SERIES
TEST.
(b) Determine whether the following series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{n^3 + 1}{n^2 + 1} = 0$$

$$\sum_{n=1}^{n+2n+3} DIUBRGES BY LIMIT COMPARISON WITH $\sum_{n=1}^{l} \frac{1}{n^4}$

$$\lim_{n \to \infty} \left(\frac{n^3+1}{n^{4+2n+3}} \right) = \lim_{n \to \infty} \frac{n^4+n}{n^{4+2n+3}} = 1$$

So $\sum_{n=1}^{l} \frac{1}{n} \sum_{n=1}^{l} \frac{n^{3+l}}{n^{4+2n+3}}$ BOTH DIUBRGE $\left(\sum_{n=1}^{l} \frac{1}{n} DU, \sum_{n=1}^{l} \frac{1}{n^{2}} DU, \sum_{n=1}^{l} \frac{1}{n^{2}+2n+3} DUBRGE \left(\sum_{n=1}^{l} \frac{1}{n} DU, \sum_{n=1}^{l} \frac{1}{n^{2}+2n+3} \right)$
YOU COULD USE DIRE CT COMPARISONUS
HARNOUC
SERIES
YOU COULD USE DIRE CT COMPARISONUS
BUT NOT WITH $\sum_{n=1}^{l} \frac{1}{n}$. HOWEVER, DIRECT
COMPARISONUTH $\frac{1}{2}\sum_{n=1}^{l} \frac{1}{n} = \sum_{n=1}^{l} \frac{1}{n}$ works.
 $\frac{1}{2n} < \frac{n^3+l}{n^4+2n+3}$, SINCE $n^4+2n+3 < 2n^4+2n$
FOR $n > 2$.
SINCE $\sum_{n=1}^{l} \frac{1}{2n}$ DIUERLES SO DOES $\sum_{n=1}^{l} \frac{n^3+l}{n^4+2n+3} =$$$

Midterm 1

(c) Determine whether the following series converges or diverges.

HERE, WE HAVE TO USE THE INTEGRAL TEST.
NOTE THAT
$$\frac{1}{X(\ln x)^2}$$
 is posITIVE, DECREASING,
AND CONTINUOUS
FOR $X > 2$.
 $\int_{2}^{\infty} \frac{dx}{(\ln x)^2} = \int_{2}^{10} \int_{2}^{\infty} \frac{du}{u^2} = \int_{1}^{1} \frac{(1 - 1)^2}{(1 - 1)^2} \int_{1}^{\infty} \frac{du}{(1 - 1)^2} = \frac{1}{1 - 1}$
 $= \int_{1}^{10} \frac{(-1)^2}{(1 - 1)^2} \int_{1}^{\infty} \frac{1}{(1 - 1)^2} = \frac{1}{1 - 1}$
So THE INTEGRAL CONVERCES.
HENCE $\int_{2}^{\infty} \frac{1}{n(\ln n)^2}$ CONVERCES.

4. (10 pts)
Find the radius of convergence and interval of convergence of the power series:

$$\sum_{n=1}^{\infty} \frac{4^n(n-2)^n}{3n!}$$
For a remote required to determine whether the series is convergent at the endpoints of the interval of convergence.
FIRST, USE RATIO TEST TO GET RADIUS.

$$\lim_{n \to \infty} \left| \frac{4^{n+1}(x-2)^{n+1}}{3(n+1)} \circ \frac{3n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{3n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{3n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{3n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{3n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{4^n(x-2)^n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{4^n(x-2)^n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{4^n(x-2)^n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{4^n(x-2)^n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{3(n+1)} \circ \frac{4^n(x-2)^n}{4^n(x-2)^n} \right| = \lim_{n \to \infty} \left| \frac{4(x-2)n}{n+1} \right|$$

$$= \left| \frac{4(x-2)}{14(x-2)} \right|$$

$$= \left| \frac{4(x-$$