EXERCISE ONE Find the solution of the differential equation

$$y'+3=2y$$

with initial condition y(0) = 2.

メロト メロト メヨト メヨト

We rewrite the equation as y'/(2y-3) = 1. The function $\frac{1}{2} \ln |2y-3|$ is an antiderivative of y'/(2y-3) (as a function of x). The antiderivatives of the constant function 1 are x + C where C is an arbitrary real number. Therefore $\frac{1}{2} \ln |2y-3| = x + C$ for some C. Taking exponentials of both sides, we get $2y = 3 + e^{x+C}$ or $2y = 3 - e^{x+C}$. As e^{x+C} is always positive, the initial condition y(0) = 2 is not possible in the second case. Thus $2y = 3 + e^{x+C}$. The initial condition y(0) = 2 can be now written as $2 \times 2 = 3 + e^{C}$. This implies that C = 0. Thus the desired solution is $y = \frac{1}{2}(3 + e^{x})$.

EXERCISE TWO Find the solution of the differential equation

$$y^2y'=2x$$

with initial condition y(1) = 2.

イロト イヨト イヨト イヨト

The function $\frac{1}{3}y^3$ is an antiderivative of y^2y' (as a function of x). The antiderivatives of 2x are $x^2 + C$ where C is an arbitrary real number. Therefore $\frac{1}{3}y^3 = x^2 + C$ for some C. This can be written as $y = (3x^2 + 3C)^{1/3}$. The initial condition y(1) = 2 can be now written as $2 = (3 + 3C)^{1/3}$, namely 8 = 3 + 3C. Thus 3C = 5 and the desired solution is $y = (3x^2 + 5)^{1/3}$.

イロト イボト イヨト イヨト