PRINT your name:

The chemicals methyl bromide (CH_3Br) and sodium thiosulphate $(Na_2S_2O_3)$ react to produce Br^- and $NaCH_3S_2O$. The total amount of sodium thiosulfate S(t) at time t is well modeled by the logistic equation S'(t) = rS(t)(S(t) - K). The constant r can be taken to be -1/120, and K depends on the relative concentration of the two chemicals. For the purposes of this question, let K = 180.

Since some of you may have memorized the solution to the logistic equation, I might as well tell you that $S(t) = \frac{K}{1 + CKe^{rKt}}$ for some constant C.

1. If the initial amount of sodium thiosulphate is 300 grams, what will be the amount after a long time?

$$S(t) = \frac{180}{1 + 180Ce^{-181/20t}} = \frac{180}{1 + C, e^{-3t/2}}$$

 $\lim_{t \to \infty} S(t) = \frac{180}{1 + \lim_{t \to \infty} C_1 e} = \frac{180}{180g}$
So chose to 180g
AFTER A LONG TIME.

2. If the initial amount of sodium thiosulphate is 30 grams, at what time t will there be 60 grams? Please leave your answer as an exact number. Do not approximate e, fractions, logarithms, π and so on.

To find
$$C_1$$
, solve $S(6) = 30 = \frac{180}{1 + C_1 e^{-3}}$, i.e.

$$\begin{aligned}
& | +C_1 = \frac{180}{30} = 6 \\
& | +C_2 = \frac{180}{30} = 6
\end{aligned}$$
Where $S(4) = \frac{180}{30} = \frac{180}{30} = \frac{180}{30} = \frac{180}{30} = \frac{180}{1 + 5e^{-3t/2}} = \frac{$