PRINT your name:

1. Find the general solution to $y^{\prime}=\frac{3 x^{2}-x}{y}$. $\quad \frac{d y}{d x}=\left(3 x^{2}-x\right)\left(\frac{1}{y}\right)$

So separating variables gives

$$
\int y d y=\int\left(3 x^{2}-x\right) d x
$$

$$
\frac{y^{2}}{2}=x^{3}-\frac{x}{2}+c
$$

$$
y^{2}=2 x^{3}-x+c
$$

$$
y= \pm \sqrt{2 x^{3}-x+c}
$$

NOTE THAT THERE ARE TWO BRANCHES OF SOLUTONS, TITOSE with $y>0$ AND THTOSE with $y<0$. SOLUTIONS LOOK LIKE

2. For the solution $y(x)$ to part 1 satisfying $y(1)=-2$, what is $\lim _{x \rightarrow+\infty} y(x)$? Fully justify your answer.

If the limit is not a real number, distinguish between $+\infty,-\infty$, and other behavior. FIRST, LETS DO TAt IS BY FINDING, THE SOLUTION wITH $y(1)=-2$. note that this means we take the negative square ROOT, le $y=-\sqrt{2 x^{3}-x+C}$.

$$
\begin{aligned}
& \text { ROOT, } 1 e \quad y=-\sqrt{2 x^{3}-x+C .} \\
& \text { LET } x=1 \text { AND } y=-2 \text { TO GET }-2=-\sqrt{2-1+C} \\
& y=-\sqrt{2 x^{3}-x+3} .
\end{aligned}
$$

Suppose we didNt Find tate general solution. How COULD WE KNOW $\lim _{x \rightarrow \infty} y(x)=-\infty$?
OBSERVE THAT FOR $y^{\prime}=\frac{3 x^{2}-x}{y}$, IF $x>1 / 3,3 x^{2}-x>0$. SINCE $y(1)<0, y^{\prime}<0$ FOR ALL $x>1 / 3$, SO SOLUTIONS DELREASEAND SLOPES ARE ALWAYS LESS THAN -2 .
Quiz 8 so $\lim _{x \rightarrow \infty} y(x) \rightarrow-\infty \quad$ MAT127 RuTh morning class THE SD.

