PRINT your name:

1. For the differential equation $y^{\prime}=x-2 y$ with slope field shown below, sketch the solution with $y(0)=0$.

2. Use Euler's method with stepsize $h=0.1$ to estimate $y(.3)$ for the differential equation $y^{\prime}=x-2 y$ with $y(0)=0$. WE START WITH THE KNOWN VALVE $y(0)=0$.

$$
\begin{aligned}
& x_{0}=0 \quad y_{0}=0 \quad y^{\prime}\left(x_{0}, y_{0}=0-2=0\right. \\
& x_{1}=x_{0}+h=1, \quad y_{1}=y_{0}+h \cdot y^{\prime}\left(x_{0}, y_{0}\right) \quad y^{\prime}(.1,0)=.1-2 \cdot 0=.1 \\
& =0 t_{0} \mid y \theta=0 \\
& \begin{aligned}
& x_{2}=.2 \quad \begin{aligned}
y_{2} & =0+.\left|x_{0}\right|=.01 \quad y^{\prime}(.2,001)
\end{aligned}=.2-2 x_{0} 01 \\
&=.18
\end{aligned} \\
& x_{3}=.3 \quad y_{3}=.01+.1 x_{0} 18=.028 \\
& \text { so allen gives } \\
& \text { with } h=a l \\
& y(.3) \approx .028
\end{aligned}
$$

