PRINT your name:

1. The power series $\sum_{n=0}^{\infty} \frac{(x / 2)^{2 n}}{n^{2}+1}=1+\frac{x^{2}}{4 \cdot 2}+\frac{x^{4}}{16 \cdot 5}+\ldots$ has a radius of convergence equal to 2 .

Find its interval of convergence. Fully justify your answer.
SINCE THE RADIUS OF CONUERGENGE IS KNOWN TO BE 2 (WE COULD USE THE RATIO TEST TO GET THIS), WE KNOW THE SERIES CONVERGES FOR $-2<x<-2$. WE MUST CHECK $x=2$ AND $x=-2$.
$x=2$ series is $\sum_{n=0}^{\infty} \frac{1}{1+n^{2}}$. We can deter mine convergence WITH THE INTEGRALTEST OR COMPARISON. LETS COMPARE TORTE CONUERGENTP-SERIES WITH $p=2: \frac{1}{1+n^{2}}<\frac{1}{n^{2}}$, SO SINCE $\sum \frac{1}{n^{2}}$ CONVERGES, SO DOES $\sum \frac{1}{n^{2}+1}$.
$x=-2$ SERIES IS $\sum \frac{(-1)^{n}}{n^{2}+1}$. SINCE $\sum \frac{1}{n^{2}+1}$ CONU, ERGS AND $\left|\frac{(-1)^{n}}{1+n^{2}}\right|=\frac{1}{1+n^{2}}$, SERIES CONVERGES. OR USE THE ALT.SERIES TEST.

$$
\text { INTERVAL IS } X \in[-2,2]
$$

2. Does the infinite series $\sum_{n=0}^{\infty} \frac{3 n^{2}-1}{n^{3}-n+3}$ converge or diverge? Fully justify your answer.

THIS dIVERGES, YOU COULD USE THE NTEGRALTEST, SINCE $\int \frac{3 x^{2}-1}{x^{3}-n+3} d x=\int \frac{d u}{u}$ w $\pi t \quad u=x^{3}-x+3$.
BUT I'D RATHER USE LIMIT COMPARISON WITH $\sum \frac{1}{n}$ (DIVERGENT).

$$
\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}-1}{n^{3}-n+3} \cdot \frac{1}{1 / n}\right)=\lim _{n \rightarrow \infty}\left(\frac{3 n^{3}-1}{n^{3}-n+3}\right)=3
$$

sINCE THE RATTO IS NOT O,

$$
\sum \frac{3 n^{2}-1}{n^{3}-n+3} \text { AND } \sum \frac{1}{n} \text { DO THE SAME, THAT IS }
$$

DIVERGE
$\frac{\left(Y \text { Ya COL2D ALSO USE DIRECT COMPPRISON WTTH } \sum \frac{3}{n}\right)}{\text { Quiz 6 } 6 \text { MAT 127 TuTh morning class }}$

