PRINT your name:

Answer each question below completely. You must fully justify your answers to get credit. Even a correct answer with no justification is wrong.

1. Write the Taylor series for e^{x} centered at $x=2$. It might be useful to realize that $e^{2} \cdot e^{x-2}=e^{x}$.
\qquad SO SUBSTTUTNG, WE GET

$$
e^{x}=e^{2} e^{x-2}=e^{2} \sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n!}=e^{2}+e^{2}(x-2)+\frac{e^{2}}{2!}(x-2)^{2}+\frac{e^{2}}{3!(x-2)^{3}+\cdots}
$$

2. Write the degree 3 Taylor polynomial for $2 x^{2}+e^{x}$ centered at $x=2$. Note that while doing the first question helps, this can be done even if you couldn't do part 1 .

$$
\begin{aligned}
& f(x)=2 x^{2}+e^{x} \\
& f^{\prime}(x)=4 x+e^{x} \\
& f^{\prime \prime}(x)=4+e^{x}
\end{aligned}
$$

$$
f(2)=8+e^{2}
$$

$$
f^{\prime}(2)=8+e^{2}
$$

$$
f^{\prime \prime}(2)=4+e^{2}
$$

$$
f^{\prime \prime \prime}(2)=e^{2}
$$

$$
\begin{gathered}
\frac{\operatorname{COEFFS}}{8+e^{2}} \\
8+e^{2} \\
\frac{4+e^{2}}{2} \\
\frac{e^{2}}{3!}
\end{gathered}
$$

SO THE DEGREE 3 TAYLOR POLYNOMAL
FOR $2 x^{2}+e^{x}$ is $8+e^{2}+\left(8+e^{2}\right)(x-2)+\frac{4+e^{2}}{2}(x-2)^{2}+\frac{e^{2}}{3!}(x-3)^{3}$

