PRINT your name:

Answer each question below completely. You must fully justify your answers to get credit. Even a correct answer with no justification is wrong.

1. Write a (geometric) power series which agrees with the function $\frac{1}{8+x^{3}}$ on the interval $-2<x<2$.

$$
\begin{aligned}
\frac{1}{8+x^{3}}=\frac{1 / 8}{1+\frac{x^{3}}{8}}=\frac{1 / 8}{1-\left(\frac{-x^{3}}{8}\right)} & =\frac{1}{8} \sum_{n=0}^{\infty}\left(\frac{-x^{3}}{8}\right)^{n} \\
& =\frac{1}{8} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n}}{8^{n}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n}}{\sum^{n+1}} \\
& =\frac{1}{8}-\frac{x^{3}}{8^{2}}+\frac{x^{6}}{8^{3}}-\frac{x^{9}}{8^{4}}+\cdots
\end{aligned}
$$

2. Write a power series representation of $\frac{3 x^{2}}{\left(8+x^{3}\right)^{2}}$. Hint: the answer to the first question is relevant.
OBSERVE THAT $\frac{d}{d x}\left(\frac{1}{8+x^{3}}\right)=\frac{-3 x^{2}}{\left(8+x^{3}\right)^{2}}$

$$
\begin{aligned}
& \text { So }-\frac{d}{d x} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n}}{8^{n+1}}=-\left(-\frac{3 x^{2}}{8^{2}}+\frac{6 x^{5}}{8^{3}}-\frac{9 x^{8}}{8^{4}}+\cdots\right) \\
&=\frac{3 x^{2}}{8^{2}}-\frac{6 x^{5}}{8^{3}}+\frac{9 x^{8}}{8^{4}}-\frac{12 x^{11}}{8^{8}}+\cdots \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(3 n) x^{3 n-1}}{8^{n+1}} \int_{\text {SAME }} .
\end{aligned}
$$

