PRINT your name:

Answer each question completely. You must fully justify your answers to get credit. Even a correct answer with no justification is wrong.

1. Does the series $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{(n+3)^{2}}\right)$ converge or diverge? If it converges, find the sum. If it diverges, say so and justify your answer fully.
THIS IS A TELESCOPING SERIES. LETS LOOKAT A FEW TERMS.

$$
\begin{aligned}
& \left.\begin{array}{rl}
\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{(n+3)^{2}}\right)=\left(1-\frac{1}{4^{2}}\right) & +\left(\frac{1}{2^{2}}-\frac{1}{5^{2}}\right)+\left(\frac{1}{3^{2}}-\frac{1}{6^{2}}\right)+\left(\frac{1}{4^{2}}-\frac{1}{7^{2}}\right) \\
& =1+\frac{1}{4}+\frac{1}{9} \\
\text { MORE FORMALS, } \\
\text { WE HAVE } S_{K} & =\sum_{n=1}^{k}\left(\frac{1}{n^{2}}-\frac{1}{(n+3)^{2}}\right)=1+\frac{1}{4}+\frac{1}{9}-\frac{1}{(k+1)^{2}}-\frac{1}{(k+2)^{2}}-\frac{1}{(k+3)^{2}} \\
\text { THEN } \lim _{K \rightarrow \infty} S_{K}=\lim _{K \rightarrow \infty}\left(1+\frac{1}{4}+\frac{1}{9}-\frac{1}{(k+1)^{2}}-\frac{1}{(k+2)^{2}}-\frac{1}{(k+3)^{2}}\right)=1+\frac{1}{4}+\frac{1}{9}
\end{array}\right)
\end{aligned}
$$

2. Consider the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n+2}}{6^{n}}$. If it converges, find the sum. If it diverges, explain why.

THIS CAN BE WRITER AS A GEOMETRIC

$$
\text { SIRES } \begin{aligned}
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n+2}}{6^{n}} & =\pi^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}(\pi)^{n}}{6^{n}} \\
& =\pi^{2} \sum_{n=0}^{\infty}\left(\frac{-\pi}{6}\right)^{n} \\
& =\frac{\pi^{2}}{1+\pi / 6}=\frac{6 \pi^{2}}{6+\pi}
\end{aligned}
$$

