PRINT your name:

Answer each question completely. You must fully justify your answers to get credit. Even a correct answer with no justification is wrong.

1. Let $\left\{a_{n}\right\}_{n=1}^{\infty} \quad$ satisfy $\quad a_{1}=6, \quad a_{n+1}=\frac{2 a_{n}}{3}$ for $n>1$.

Write the first four terms of the sequence and then give a formula for a_{n} that does not depend explicitly on previous terms.

$$
\begin{aligned}
a_{1}=6, a_{2}=\frac{2}{3} \cdot 6, a_{3} & =\frac{2}{3}\left(\frac{2}{3} \cdot 6\right)=\left(\frac{2}{3}\right)^{2} \cdot 6 \\
a_{4} & =\left(\frac{2}{3}\right)^{3} \cdot 6 \quad \text { ETC. } \\
a_{n} & =\left(\frac{2}{3}\right)^{n-1} \cdot 6
\end{aligned}
$$

2. Let $b_{n}=\frac{\sqrt{n^{2}+5}}{n^{2}}+\cos \left(\frac{\pi}{n}\right)$.

Does the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ converge or diverge?
If it converges, calculate the limit. If it diverges, explain why.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =\lim _{n \rightarrow \infty} \frac{\sqrt{2^{2}+5}}{n^{2}}+\lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sqrt{\frac{n^{2}}{n^{2}}+\frac{5}{n}}+\cos \left(\lim _{n \rightarrow \infty} \frac{\pi}{n}\right) \\
& =0+\cos (0) \\
& =1
\end{aligned}
$$

(SINCE THE LIMIT EXISTS, THE SEQUENCE CONVERGES)

