
EXERCISE 1
(1) Consider the sequence (|an|). As | cos | ≤ 1, we have

0 ≤ |an| ≤
2n + 1

5n
.

As 2n+1
5n = 1+ 1

2n

( 5
2 )n , lim 1

2n = 0 and lim(5
2)n = +∞, we get

lim 2n + 1
5n

= 0.

By Squeeze Theorem we obtain lim |an| = 0. A sequence converges to zero if and only
if its absolute value sequence converges to zero. Therefore the limit of (an) is 0.

(2) We divide both numerator and denominator of an by n3 and get an = 1+2/n+4/n2

2+2/n2 . Since
1/n and 1/n2 converges to 0, the sequence (an) converges to 1

2 .

(3) Consider the function f(x) = ln(x)+1
x1/3 . The derivative of ln(x)+1 is 1

x and the derivative
of x1/3 is x−2/3

3 . By l’Hôpital’s rule, we have

lim
x→+∞

f(x) = lim
x→+∞

1
x

x−2/3

3
= lim

x→+∞
3x−1/3 = 0.

By a theorem that we learned in MAT127, the limit of (an) is 0.
EXERCISE 2
(1) First remark that for any positive integer n the number n2 + 2n − 2 is positive. This

means that we have an alternating series. We want to apply the alternating series test to
prove that the series is convergent. Let bn = 1

n2+2n−2 . We need to prove that lim bn = 0
and that the sequence (bn) is decreasing. The decreasing property follows from the fact
that the denominators n2 +2n−2 form an increasing sequence. It is clear that the limit
of (bn) is 0.

(2) We already did this question this semester. Integral test.
(3) We denote by (an) the term sequence of the given series. We want to prove the conver-

gence of the series by proving its absolute convergence. Since | cos | is always ≤ 1, we
have |an| ≤ 2n+1

5n . Since the series
∑ 2n

5n ,
∑ 1

5n are geometric series with postive ratio
< 1, they converge. Therefore the sum of these two series, namely

∑ 2n+1
5n converges as

well. By the comparison test, the series
∑
|an| is convergent. QED.

EXERCISE 3
(1) The McLaurin series of ln(1 + x) is

∞∑
n=0

(−1)n+1xn/n.

The substituion x 7→ x2/2 gives us

ln(1 + x) =
∞∑

n=0
(−1)n+1(x2/2)n/n =

∞∑
n=0

(−1)n+1 x2n

n2n
.

Hence

f(x) = x2 ln(1 + x) = x2
∞∑

n=0
(−1)n+1 x2n

n2n
=
∞∑

n=0
(−1)n+1 x2n+2

n2n
.

(2) We apply the ratio test. Denote by an the term (−1)n+1 x2n+2

n2n . We have∣∣∣∣an+1
an

∣∣∣∣ = 2x2n

n + 1 .

This ratio converges to 2x2. For 2x2 < 1, we need |x| <
√

2
2 . Thus the radius is

√
2

2 .
1
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(3) We integrate the above series term by term. The function (−1)n+1 x2n+3

(2n+3)n2n is a primitive
function of (−1)n+1 x2n+2

n2n . By the fundamental theorem of calculus we obtain∫ 1

0
(−1)n+1 x2n+2

n2n
dx = (−1)n+1 1

(2n + 3)n2n
.

Therefore ∫ 1

0
f(x)dx =

∞∑
n=0

(−1)n+1 1
(2n + 3)n2n

.

EXERCISE 4
(1) The equation can be written in a separable form as follows :

y′/(1 + y) = x2.

The antiderivatives of the right-hand side are x3/3 + C with C ∈ R. The function
ln |1 + y| is an antiderivative of the left-hand side. Therefore

ln |1 + y| = x3/3 + C

for some C. By taking exponential of both sides we get

|y + 1| = ex3/3+C .

Either y = −1 + ex3/3+C or y = −1− ex3/3+C . The initial condition y(0) = 1 is > −1,
thus y = −1 + ex3/3+C . Moreover the initial condition gives us −1 + eC = 1, i.e. eC = 2.
Hence our desired solution is −1 + 2ex3/3.

(2) The characteristic equation is z2 + 2z + 1 = 0. It has a double real root −1. The general
solution of the differential equation is C1e−x + C2xe−x. The initial conditions now can
be written as y(0) = C1 = 2 and y′(0) = −C1 + C2 = 2. Therefore C1 = 2, C2 = 4 and
our desired solution is 2e−x + 4xe−x.

EXERCISE 5
We denote by A(x) the value obtained by the Euler method at a point x. The first order

Taylor polynomial of y at 0 is
y(0) + y′(0)x = 1 + (0 + y(0))x = 1 + x.

Thus
A(0.1) = 1 + 0.1 = 1.1.

The first order Taylor polynomial of y at 0.1 is
y(0.2) + y′(0.2)x = y(0.1) + (2× 0.1 + y(0.1))x.

Thus
A(0.2) = A(0.1) + (0.2 + A(0.1))0.1 = 1.1 + 1.3× 0.1 = 1.23

The first order Taylor polynomial of y at 0.2 is
y(0.2) + y′(0.2)x = y(0.2) + (2× 0.2 + y(0.2))x.

Thus
A(0.3) = A(0.2) + (0.4 + A(0.2))0.1 = 1.23 + 1.63× 0.1 = 1.393.

EXERCISE 6 These topics are not covered in MAT127 fall 2021.
EXERCISE 7 We denote by P the population of bees and by t the number of years. Since

the initial population is below the carrying capacity, our solution of the logistic equation has
the form

P (t) = KP (0)ert

K − P (0) + P (0)ert

where K = 10000 is the carrying capacity, P (0) = 1000 is the initial population and r is some
constant. The population after two years is

2000 = P (2) = 10000× 1000e2r

9000 + 1000e2r
.
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This equation gives us e2r = 9
4 . The population after four years is

P (4) = 10000× 1000e4r

9000 + 1000e4r
=

10000× 1000(9
4)2

9000 + 1000(9
4)2 = 3600.


