Quiz 7 wed.

1) VERIFY THAT $y(x)=\sin (2 x-1)+(x-1)^{2}$ is A SOLUTION TO

$$
y^{\prime \prime}+4 y=4 x^{2}-8 x+6
$$

WE HAVE $y^{\prime}=2 \cos (2 x-1)+2(x-1)$
so $\quad y^{\prime \prime}=-4 \sin (2 x-1)+2$
THEN

$$
\begin{aligned}
& \text { HeN } \\
& \begin{aligned}
y^{\prime \prime}+4 y & =(-4 \sin (2 x-1)+2)+4\left(\sin (2 x-1)+x^{2}-2 x+1\right) \\
& =4 x^{2}-8 x+4+2=4 x^{2}-8 x+6
\end{aligned}
\end{aligned}
$$

as claimed.
2) some the initial value problean

$$
y^{\prime}=x e^{x^{2}-1}+\frac{1}{\sqrt{x}}-3, \quad y(1)=1 / 2
$$

integratna both sides gives

$$
\begin{aligned}
\int d y & =\int_{\text {LET } u=x^{2}-1}^{d u}\left(x e^{x^{2}-1}+x^{-1 / 2}-3\right) d x \\
y & =\frac{1}{2} e^{x^{2}-1}+2 x^{1 / 2}-3 x+C .
\end{aligned}
$$

SINCE $y(1)=\frac{1}{2}$, we have

$$
\frac{1}{2}=\frac{1}{2} e^{0}+2-3+c
$$

THAT $(s, 0=-1+C$, so $C=1$.
TILE DESIRED SOLUTION IS:.

$$
y(x)=\frac{1}{2} e^{x^{2}-1}+2 \sqrt{x}-3 x+1
$$

