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1. Generalities

The general second order homogeneous linear differential equation with constant coefficients
is

Ay′′ +By′ + Cy = 0,
where y is an unknown function of the variable x, and A, B, and C are constants. If A = 0 this
becomes a first order linear equation, which in this case is separable, and so we already know
how to solve. So we will consider the case A 6= 0. If we want, we can the divide through by A
and obtain the equivalent equation

y′′ + by′ + cy = 0,

where b = B/A and c = C/A (that is if we have nothing better to do, and like the first coefficient
to be equal to 1).

Linear with constant coefficients means that each term in the Left Hand Side of the equation
is a constant times y or a derivative of y. Homogeneous means that we exclude equations like
Ay′′ +By′ +Cy = f(x) which can be solved, in certain important cases, by an extension of the
methods we will study here. Here we only will solve the case where the Right Hand Side f(x)
is identically 0. Homogeneous also means that the constant function y = 0 is always a solution
to the equation.

By now we know to expect 2 degrees of freedom in the solution of this second order equation,
i.e., the general family of solutions should have two arbitrary constants. We call the general
family of solutions for short the general solution. That means that to find our general
solution we have to find two independent functions y = f1(x) and y = f2(x) which are
solutions, and then the general solution will be y = C1 · f1(x) + C2 · f2(x). Now If y = f1(x)
and y = f2(x) are indeed solutions, one can check by plugging in that y = C1 · f1(x) + C2 · f2(x)
will be a solution. The fact that all solutions are of this form (i.e., we haven’t missed any solution)
is harder to ascertain, but nevertheless true. Notice that of course we do need f1(x) and f2(x)
to be independent . What does it mean for two functions to be independent? It means that
one of them is not equal to a constant times the other. For example the functions f1(x) = ex
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and f2(x) = 2ex are not independent, because f2(x) = 2 · f1(x). On the other hand, for example
the functions g1(x) = ex and g2(x) = e2x are independent (although we do not prove it, it seems
intuitively clear that they are independent). To construct the general solution for a second
order equation we do need two independent solutions. For example we cannot construct a general
solution from say f1(x) = ex and f2(x) = 2ex, because then the family y = C1 · f1(x) + C2 · f2(x)
will be y = C1 · ex + C2 · 2ex = (C1 + 2C2)ex = C3e

x (here C3 = C1 + 2C2). I.e., we only will get
one degree of freedom if our functions are not independent, and we need two degrees of freedom.
That is why it is important that we get two independent solutions of the equation somehow (by
guessing, being smart or any way we can think of).

Let us look for the general solution of our second order homogeneous linear differential equa-
tion with constant coefficients. As often happens with differential equations, we try to make an
educated guess as to the type of solutions. To do that one usually tries to see what happens with
the equations with simplest possible coefficients. As we already agreed that we want A 6= 0,
we can try checking what happens with the equation if we set the other coefficients to zero.
And in fact so far we have already seen examples of 3 types of second order homogeneous linear
differential equation with constant coefficients:

We have met in Calculus I with the equation (this is the simplest case when both b and c are
equal to 0)

y′′ = 0.
Here we don’t need to guess, as we can solve by first getting y′ = C2, and then y = C1 +C2 · x.
Thus the general solution is y = C1 + C2 · x.

We can next try to solve the differential equation we get when b = −1, c = 0:

y′′ − y′ = 0, y′′ = y′

We try guessing among our usual collection of functions—constant y = 1, exponentials y = ekx,
trigonometry y = sin kx, y = cos kx—which one has the first derivative same as the second.
We quickly come to the conclusion that of course the exponential y = ex (which has all its
derivative equal among themselves), and the constant y = 1 both solve the equation. So the
general solution is y = C1 · ex + C2 · 1.

Next easiest in line to try to solve is the differential equation (with b = 0, c = 1):

y′′ + y = 0, y′′ = −y
Again we try to guess among our usual collection of functions which of them have second
derivative equal to minus the function: that is the trigonometry y = sinx and y = cosx. These
two are indeed solutions, and they are independent, so our general solution is y = C1 sinx +
C2 cosx.

In fact we saw another example of this situation:

4y′′ + 25y = 0,

this was problem 7.1.4, and we saw that the solutions look like y = C1 · cos 5
2x+ C2 · sin 5

2x.
We have also seen

2y′′ + y′ − y = 0,

this was problem 7.1.3 , and we saw that the general solution was y = C1 · e−x + C2 · e
1
2
x.

Basically we see that the solutions in the different cases could be polynomials , they could
be trigonometry, or they could be exponentials. Of course, by now we fully expect in more
complicated cases the mixtures of the polynomial, trigonometry and exponential to show
up: the solutions could possibly include functions of the kind of xnerx cos kx and xnerx sin kx.
Luckily, as we will see, in the case of second order the mixture of the three will not appear;
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only the mixture of polynomial-exponential and exponential-trigonometry. But in the higher
order linear differential equations, one indeed meets with solutions containing the mixture
of all three: polynomial-exponential-trigonometry. In this class though, we will only solve
homogeneous linear differential equation of second order.

Let us try to find solution in the general case now; i.e., we start to look for solutions of the
general equation of second order

Ay′′ +By′ + Cy = 0,
Of course we always start with hoping for the best, so we try the easiest possible type of solution,
which would be the exponential erx (easiest to differentiate). We plug in y = erx, trying to find
what number r will make this a solution. That will give us:

Ar2erx +Brerx + Cerx = 0, (Ar2 +Br + C)erx = 0.

But erx is never zero, so we can cancel it, and we get the equation

Ar2 +Br + C = 0.

This is called the characteristic equation . Why?: because if erx is a solution to the
differential equation, then r is a solution to this quadratic equation. Let us see what can
possibly happen with this quadratic equation.

2. Characteristic equation with different roots

If the Discriminant of this quadratic equation (D = B2 − 4AC) is strictly positive this
quadratic equation has two different solutions:

r1,2 =
−B ±

√
D

2A
,

thus we have at least two independent (different) choices for a solution of the differential
equation: er1x and er2x. And as by now we know to expect 2 degrees of freedom, this is perfect,
because the general family of solutions will be

y = C1 · er1x + C2 · er2x.
(It is easy to check by plugging in that this will be a solution of our differential equation for any
C1 and C2. The fact that all solutions are of this form (i.e., we haven’t missed any solution) is
harder to ascertain, but nevertheless true.)

Examples:
Example 1. Solve the equation

y′′ − y = 0,
Solution: We solve the characteristic equation (”replacing orders with powers”, and using that
y is the zero order derivative):

r2 − 1 = 0, which gives us r1 = 1; r2 = −1

That means
e1·x = ex and e−1·x = e−x

are two independent solutions. And thus the general solution is

y = C1e
x + C2e

−x.

One can check that by plugging in the differential equation.
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Example 2. Let’s go back to the equation

2y′′ + y′ − y = 0,

The characteristic equation is:

2r2 + r − 1 = 0, which gives us r1 = −1; r2 =
1
2
,

which of course gives the solutions

e−1·x = e−x and e
1
2
x,

and thus the general solution is:
y = C1e

−x + C2e
1
2
x.

One can check that by plugging in the differential equation.

3. Characteristic equation with repeated roots

Let us now try and solve the equation

y′′ − 4y′ + 4y = 0,

We write the characteristic equation

r2 − 4r + 4 = 0,

and because the discriminant D = 16 − 16 = 0, we have r1 = r2 = 2. This only gives us the
one solution e2x, and no second solution for the second degree of freedom. How then to get the
second solution? To get inspiration consider again the example

y′′ = 0,

Here we know the solution, y = C1 ·1+C2 ·x. But let us solve it with the characteristic equation:

r2 = 0 which gives us both r1 = 0 and r2 = 0.

Now as we know the general solution: y = C1 · 1 + C2 · x, we can see that the first independent
solution is indeed e0·x = 1, but the second one appears to be x · e0·x = x. (Indeed x is a solution
to the y′′ = 0—we can check by plugging in).

We can now go back to the equation y′′ − 4y′ + 4y = 0 and try something similar: the first
independent solution is e2x, try with a second one: xe2x. We check that it is a solution by
plugging in:
We have

(xe2x)′ = e2x + 2xe2x; (xe2x)′′ = 2e2x + (2e2x + 4xe2x) = 4e2x + 4xe2x

Plugging in:

y′′ − 4y′ + 4y = (xe2x)′′ − 4(xe2x)′ + 4(xe2x) = 4e2x + 4xe2x − 4(e2x + 2xe2x) + 4xe2x = 0,

so xe2x is indeed a solution of the differential equation y′′ − 4y′ + 4y = 0. Then our general
solution is y = C1e

2x + C2xe
2x.

We can do that every time we have repeated roots of the characteristic equation (i.e., when
the discriminant D = B2 − 4AC = 0):
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If r1 = r2 = r are the roots of the characteristic equation, then the first independent solution
is y = erx, and the second one is y = xerx. The general solution is y = C1e

rx + C2xe
rx.

Example: Solve the equation
y′′ − 6y′ + 9 = 0,

Solution: the characteristic equation is

r2 − 6r + 9 = 0, r1 = r2 = 3;

The two independent solutions are

y1 = e3x, y2 = xe3x;

the general solution is:
y = C1e

3x + C2xe
3x.

One can check that by plugging in the differential equation.

4. Characteristic equation with no real roots

Let us now try and solve again the following equation:

4y′′ + 25y = 0,

but let’s try through the characteristic equation. The problems is that the characteristic equation
is

4r2 + 25 = 0, thus r1,2 =
−B ±

√
D

2A
=

0±
√
−400

8
=
±5
2
√
−1,

and it doesn’t have real roots (
√
−1 is a slight problem :). But we know that the solution of

the differential equation is y = C1 · cos 5
2x+ C2 · sin 5

2x. So we notice that the two independent
solutions are the trigonometry y = cos kx, and y = sin kx, where k = 5

2 . We can get these if
ignore the

√
−1 in r1,2 = ±5

2

√
−1, but instead of exponentials (which we would have if the

√
−1

was not there) we have trigonometry now.
Thus the conclusion seems to be that whenever we have real roots we take exponen-

tials, whenever we have
√
−1 (imaginary roots) we take trigonometry.

Then the question is what happens with the mixtures? For example, let us consider the
equation

y′′ + 4y′ + 13y = 0,
The characteristic equation is

r2 − 4r + 13 = 0, r1,2 =
−B ±

√
D

2A
=

4±
√
−36

2
= 2± 3

√
−1

Now we have a mixture: 2 is real (without
√
−1) , and 3

√
−1 is not. That suggests that we

should have 2 appear in an exponential, and the 3 appear in a trigonometry (i.e., either cos 3x
or sin 3x). Thus we concoct the mixtures y = e2x cos 3x and y = e2x cos 3x (indeed these are the
only two independent mixtures possible in this case). We have to check if they are solutions: we
can do that by plugging in. We calculate for y = e2x cos 3x

y′ = 2e2x cos 3x− 3e2x sin 3x

y′′ = 4e2x cos 3x− 6e2x sin 3x− 6e2x sin 3x− 9e2x cos 3x = −5e2x cos 3x− 12e2x sin 3x
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Plugging in:

y′′ + 4y′ + 13y = −5e2x cos 3x− 12e2x sin 3x− 4(2e2x cos 3x− 3e2x sin 3x) + 13e2x cos 3x =

= −5e2x cos 3x− 12e2x sin 3x− 8e2x cos 3x+ 12e2x sin 3x+ 13e2x cos 3x = 0

So indeed y = e2x cos 3x is a solution, and we can also check that y = e2x sin 3x is a solution.
Thus the general solution is

y = C1 · e2x cos 3x+ C2 · e2x sin 3x = e2x(C1 · cos 3x+ C2 · sin 3x).

So the rule then if the quadratic characteristic equation doesn’t have real roots (the Discrim-
inant D = B2 − 4AC < 0) is:
Write the solutions of the characteristic equation carefully:

r1,2 =
−B ±

√
D

2A
=
−B
2A
±
√
D

2A
=
−B
2A
± (
√
−D
2A

)
√
−1

Then the two independent solutions are

y1 = e
−B
2A

x cos(
√
−D
2A

x), y2 = e
−B
2A

x sin(
√
−D
2A

x);

and the general solution is

y = C1y1+C2y2 = C1e
−B
2A

x cos(
√
−D
2A

x)+C2e
−B
2A

x sin(
√
−D
2A

x) = e
−B
2A

x(C1 cos(
√
−D
2A

x)+C2 sin(
√
−D
2A

x)).

Example: Solve the equation

y′′ − 6y′ + 10y = 0,

Solution: the characteristic equation is

r2 − 6r + 10 = 0, r1,2 =
6±
√
−4

2
= 3± 1

√
−1;

The two independent solutions are

y1 = e3x cos 1x = e3x cosx, y2 = e3x sinx;

the general solution is:

y = C1e
3x cosx+ C2e

3x sinx = e3x(C1 cosx+ C2 sinx).

5. Summary on solving the linear second order homogeneous differential
equation

To solve the equation:
Ay′′ +By′ + Cy = 0,

first solve the characteristic equation:

Ar2 +Br + C = 0.

We have 3 cases:



NOTES ON SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS 7

Case 1: Two different real roots (D > 0)

r1,2 =
−B ±

√
D

2A
.

The two independent solutions are

y1 = er1x, y2 = er2x;

the general solution is
y = C1y1 + C2y2 = C1e

r1x + C2e
r2x

Case 2: Repeated roots (D = 0)

r1,2 =
−B ±

√
D

2A
=
−B
2A

, r1 = r2 = r =
−B
2A

.

The two independent solutions are

y1 = erx, y2 = xerx;

the general solution is

y = C1y1 + C2y2 = C1e
rx + C2xe

rx = erx(C1 + C2x)

Case 3: No real roots (D < 0)

r1,2 =
−B ±

√
D

2A
=
−B
2A
±
√
D

2A
=
−B
2A
± (
√
−D
2A

)
√
−1.

The two independent solutions are

y1 = e
−B
2A

x cos(
√
−D
2A

x), y2 = e
−B
2A

x sin(
√
−D
2A

x);

and the general solution is

y = C1y1+C2y2 = C1e
−B
2A

x cos(
√
−D
2A

x)+C2e
−B
2A

x sin(
√
−D
2A

x) = e
−B
2A

x(C1 cos(
√
−D
2A

x)+C2 sin(
√
−D
2A

x)).

6. Solving initial value problems

Initial Value problem is a system of
• Differential Equation
• Initial Conditions

Since a second order linear equation has two degrees of freedom, for an initial value problem we
need two initial conditions: for y and for y′.

To solve the initial value problem:
• first: solve the differential equation. The general solution will have two constants C1

and C2 (because we have two degrees of freedom).
• second: plug in the initial conditions and solve for the constants C1 and C2.
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Examples:
Example 1. Solve the initial value problem:

2y′′ + y′ − y = 0, y(0) = 0, y′(0) = 1

Solution: 1. General solution: we already solved the equation, and we got the general solution

y = C1e
−x + C2e

1
2
x.

2. Initial conditions: now we plug in to find the constants C1 and C2:

y(0) = C1e
−0 + C2e

1
2
0 = C1 + C2 = should equal to 0

y′(x) = −C1e
−x + C2 ·

1
2
e

1
2
x

y′(0) = −C1e
−0 + C2 ·

1
2
e

1
2
0 = −C1 +

1
2
· C2 = should equal to 1

Thus we get the system for C1 and C2:

C1 + C2 = 0

−C1 +
1
2
· C2 = 1

We solve this:

C2 = −C1

− C1 −
1
2
· C1 = 1, −3

2
· C1 = 1, C1 = −2

3
, C2 =

2
3
.

Thus the solution to the Initial Value problem is

y = −2
3
e−x +

2
3
e

1
2
x.

One can check that by plugging in both the differential equation and the initial conditions.

Example 2. Solve the initial value problem:

y′′ − 4y′ + 4y = 0, y(0) = 1, y′(0) = 0

Solution: 1. General solution: we already solved the equation, and we got the general solution

y = C1e
2x + C2xe

2x.

2. Initial conditions: now we plug in to find the constants C1 and C2:

y(0) = C1e
0 + C2 · 0 · e0 = C1 + 0 = should equal to 1

y′(x) = C1 · 2e2x + C2 · (e2x + 2x · e2x)

y′(0) = 2C1e
0 + C2 · (e0 + 0 · e0) = 2C1 + C2 = should equal to 0

Thus we get the system for C1 and C2:

C1 = 1
2C1 + C2 = 1

We solve this:

C1 = 1
C2 = −2C1 = −2, C2 = −2.
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Thus the solution to the Initial Value problem is

y = e2x − 2xe2x.

One can check that by plugging in both the differential equation and the initial conditions.

Example 3. Solve the initial value problem:

y′′ − 6y′ + 10y = 0, y(0) = 1, y′(0) = 0

Solution: 1. General solution: we already solved the equation, and we got the general solution

y = C1e
3x cosx+ C2e

3x sinx = e3x(C1 cosx+ C2 sinx).

2. Initial conditions: now we plug in to find the constants C1 and C2:

y(0) = C1e
0 cos 0 + C2e

0 sin 0 = C1 + 0 = should equal to 1

y′(x) = (C1 · 3e3x cosx− C1 · e3x sinx) + (C2 · 3e3x sinx+ C2e
3x cosx)

y′(0) = (C1 · 3 · 1− C1 · 0) + (C2 · 3 · 0 + C2 · 1 · 1) = 3C1 + C2 = should equal to 0

Thus we get the system for C1 and C2:

C1 = 1
3C1 + C2 = 1

We solve this:

C1 = 1
C2 = −3C1 = −3, C2 = −3.

Thus the solution to the Initial Value problem is

y = e3x cosx− 3e3x sinx = e3x(cosx− 3 sinx).

One can check that by plugging in both the differential equation and the initial conditions.
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Problems cribbed from Salas-Hille-Etgen, page 1133

In exercises 1-10, find the general solution. Give the real form.

1. y′′ − 13y′ + 42y = 0.

2. y′′ + 7y′ + 3y = 0.

3. y′′ − 3y′ + 8y = 0.

4. y′′ − 12y = 0.

5. y′′ + 12y = 0.

6. y′′ − 3y′ + 9
4 y = 0.

7. 2y′′ + 3y′ = 0.

8. y′′ − y′ − 30y = 0.

9. y′′ − 4y′ + 4y = 0.

10. 5y′′ − 2y′ + y = 0.

In exercises 11-16, solve the given initial-value problem.

11. y′′ − 5y′ + 6y = 0, y(0) = 1, y′(0) = 1

12. y′′ + 2y′ + y = 0, y(2) = 1, y′(2) = 2

13. y′′ + 1
4 y = 0, y(π) = 1, y′(π) = −1

14. y′′ − 2y′ + 2y = 0, y(0) = −1, y′(0) = −1

15. y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1

16. y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2



NOTES ON SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS 11

8. The connection between exponentials and trigonometry: Euler’s formula

One may ask how come in some of the cases the solutions to the differential equation are
trigonometric functions, and in other cases the solutions are exponential functions; but in both
cases the solutions are connected to the characteristic equation. The answer to that question
is that there is a connection between the exponential e(λ·

√
−1)x and the trigonometric functions

sinλx and cosλx.
Of course to find that connection, one first need to make sense of what is e(λ·

√
−1)x; i.e., one

needs to work with numbers like λ ·
√
−1, which are not real numbers. That is achieved by giving

the number
√
−1 formally a name i, so we write i =

√
−1; and we work with it as if nothing

happened. We call this number i the imaginary unit (that’s where the name i for the
√
−1

comes from). So we now work with numbers of the form z = a+ b · i, where the numbers a and
b are any real numbers, and i =

√
−1. We can add and subtract such numbers as usual (as if

the i is a variable, with of course the property i2 = (
√
−1)2 = −1):

z1 + z2 = (a1 + i · b1) + (a2 + i · b2) = (a1 + a2) + i · (b1 + b2),

z1 − z2 = (a1 + i · b1)− (a2 + i · b2) = (a1 − a2) + i · (b1 − b2).

We can also multiply such numbers:

z1 · z2 = (a1 + i · b1) · (a2 + i · b2) = a1 · a2 + i · a1 · b2 + i · b1 · a2 + i2 · b1 · b2 =

= a1 · a2 + i · a1 · b2 + i · b1 · a2 − b1 · b2 = (a1 · a2 − b1 · b2) + i · (a1 · b2 + b1 · a2).

Basically each time we just multiply out or add, but we keep the parts with i separate, and the
part without i separate as well (of course we always keep in mind that i2 = (

√
−1)2 = −1).

The part without i is called real part, the part which goes with the i is called imaginary part.
So for example the number 2 + 3i is a complex number, with real part equal to 2, and imaginary
part equal to 3.

The collection of numbers z = a+ i · b (or if one prefers to write it a+ b · i), where the numbers
a and b are any real numbers, is called complex numbers .

So with this newly obtained knowledge we can write the solutions of the characteristic equation
when the discriminant is negative, i.e., D = B2 − 4AC < 0, as

r1,2 =
−B ±

√
D

2A
=
−B
2A
±
√
D

2A
=
−B
2A
± (
√
−D
2A

)
√
−1 =

−B
2A
± (
√
−D
2A

)i.

So we see that when the discriminant is negative, the solutions are complex numbers, with
the same real part −B2A and imaginary parts ±

√
−D
2A . Call for short the real part µ = −B

2A , and
λ =

√
−D
2A . We want to understand what is eµ+λi. Of course we know what is eµ, when µ is real,

but we don’t know yet what is ez, when z is complex. As we know how to add and multiply
complex numbers we can use the Taylor expansion of the exponential to define what is ez:

ez =
∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+
z4

4!
+ · · ·+ zn

n!
+ . . .

One can check that this exponential function is defined for all complex numbers, and it has all
the usual properties the real exponential had, for example:

ez1+z2 = ez1 · ez2 .
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Now if we put in the exponential z = iy, where y is real, we get

eiy =
∞∑
n=0

(iy)n

n!
= 1 + iy +

(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+

(iy)5

5!
+ · · ·+ (iy)n

n!
+ · · · =

= 1 + iy +
i2y2

2!
+

i3y3

3!
+

i4y4

4!
+

i5y5

5!
+ · · ·+ inyn

n!
+ . . .

Now we can use that

i2 = −1, i3 = i2 · i = −i, i4 = i2 · i2 = 1, i5 = i, . . .

That will mean that in the series formula for eiy all the even powers will not have i, and all the
odd powers will have i in them. I.e., the even powers will go into the real part of the eiy, and
the odd powers will go into the imaginary part of the eiy:

eiy = 1 + iy − y2

2!
− iy3

3!
+
y4

4!
+

iy5

5!
+ · · · =

= (1− y2

2!
+
y4

4!
− x6

6!
+ . . . ) + i(y − y3

3!
+
y5

5!
− . . . )

Here we recognize that the first part, the real part, is the Taylor series of cos y, and the second
part, the imaginary part, is the Taylor series of sin y. So we get the following famous result:

eiy = cos y + i sin y.

This is called Euler’s formula .
The Euler’s formula explains what happens when the characteristic equation has complex

roots: Suppose the roots of the characteristic equation are

r1,2 =
−B
2A
± (
√
−D
2A

)i.

As before, call for short the real part µ = −B
2A , and λ =

√
−D
2A , thus

r1 = µ+ i · λ, r2 = µ− i · λ.

Then the general solution to the differential equation can be written using the complex expo-
nential as

y = C1e
r1x + C2e

r2x = C1e
(µ+i·λ)x + C2e

(µ−i·λ)x = C1e
µxe+i·λx + C2e

µxe−i·λx =

= C1e
µx(cosλx+ i · sinλx) + C2e

µx(cos(−λx) + i · sin(−λx))

Here we used the Euler’s formula. Now we use the fact that cos(−X) = cosX and sin(−X) = − sinX
and we rearrange:

y = C1e
µx(cosλx+i·sinλx)+C2e

µx(cosλx−i·sinλx) = (C1+C2)eµx cosλx+i·(C1−C2)eµx sinλx

Recall that we named µ = −B
2A , and λ =

√
−D
2A ; so we see that

y = C1e
r1x + C2e

r2x = (C1 + C2)e
−B
2A

x cos(
√
−D
2A

x) + i · (C1 − C2)e
−B
2A

x sin(
√
−D
2A

x).

Now if we call C̃1 = (C1 + C2) and C̃2 = i(C1 − C2), we get:

y = C1e
r1x + C2e

r2x = C̃1e
−B
2A

x cos(
√
−D
2A

x) + C̃2e
−B
2A

x sin(
√
−D
2A

x).
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That shows that the general solution of the second order differential equation can be written
in two equally correct ways: either we use the two complex exponentials, or the two exponen-
tial/trigonometry mixtures. The complex exponentials have the benefit of having the same form
as the solutions for real characteristic roots. The mixtures though have the benefit of giving
real solutions . Usually when solving the differential equation, or an initial value problem, we
need a real solution, so the exponential/trigonometry mixtures are to be preferred.


