
MAT126 Fall 2009

Practice Midterm II
The actual midterm will consist of six problems
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Problem 1 If the function g(x) is given by

g(x) =

x2∫
2x

t ln tdt,

compute the derivative g′(x)

a) by using the Fundamental Theorem of Calculus to differentiate the inte-

gral

b) by using the Evaluation Theorem to first evaluate g(x) explicitly, and

then differentiating.

Solution:

a) We note that g(x) has the form similar to the fundamental theorem of

calculus, but the limits of integration are not as required to apply the theorem.

To apply the fundamental theorem of calculus, we denote

F (x) =
∫ x

0

t ln tdt,

so that then g(x) = F (x2) − F (2x) (recall that the integral of a function from

2x to x2 is equal to the difference of the integrals from 0 to x2 and from 0 to

2x).

By the fundamental theorem of calculus we have F ′(x) = x lnx, and thus

by applying the chain rule we have

g′(x) = F ′(x2)·2x−F ′(2x)·2 = x2 ln(x2)·2x−2x ln(2x)·2 = 4x3 ln(x)−4x ln(2x),

where we have used ln(x2) = 2 lnx for the last identity.

b) We are going to compute the integral

x2∫
2x

t ln tdt

by parts. Since we want to get the ln t differentiated, we will use u = ln t, which

forces us to have dv = tdt, so that du = dt
t and v = t2

2 . We thus obtain

g(x) =

x2∫
2x

t ln tdt =
[
t2 ln t

2

]x2

2x

−
x2∫

2x

t2dt

2t

2



=
[
t2 ln t

2

]x2

2x

−
x2∫

2x

tdt

2
=
[
t2 ln t

2
− t2

4

]x2

2x

=
x4 ln(x2)− 4x2 ln(2x)

2
− x4 − 4x2

4

= x4 ln(x)− 2x2 ln(2x) + x2 − x4

4
,

where we have again used ln(x2) = 2 lnx. We now use the chain and product

rules to compute the derivative

g′(x) = 4x3 ln(x) +
x4

x
− 4x ln(2x)− 2x2 · 2

2x
+ 2x− x3 =

4x3 ln(x) + x3 − 4x ln(2x)− 2x+ 2x− x3 = 4x3 ln(x)− 4x ln(2x)

matching the answer in part a).
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Problem 2 Evaluate the following definite integrals:

1.
2∫

0

x2
√

4− x2dx

2.
eπ∫
1

cos(lnx) sin2(lnx)
x

dx

3.
2/π∫

1/π

sin(1/x)
x2

dx

Solution:

1. In this case a trigonometric substitution is called for. We substitute x =

2 sin θ, in which case√
4− x2 =

√
4− 4 sin2 θ =

√
4 cos2 θ = 2 cos θ and dx = d(sin θ) = cos θdθ

so we get (don’t forget to change the limits of integration, using θ =

arcsin(x/2) !)

2∫
0

x2
√

4− x2dx =
∫ π/2

0

sin2 θ cos2 θdθ

Using the half-angle formulas we have

sin2 θ =
1
2

(1− cos(2θ)); cos2 θ =
1
2

(1 + cos(2θ))

and thus the above integral becomes∫ π/2

0

1
4

(1− cos(2θ))(1 + cos(2θ))dθ =
1
4

∫ π/2

0

(1− cos2(2θ))dθ

1
4

∫ π/2

0

sin2(2θ)dθ =
1
4

∫ π/2

0

1− cos(4θ)
2

dθ =

1
8

[
x− sin(4θ)

4

]π/2
0

=
1
8

(
π/2− 0− sin(2π)− sin(0)

4

)
=

π

16

where we computed
∫

cos(4θ)dθ = 1
4 sin(4θ) + c in the last line.
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2. Notice that in this case both sin and cos are evaluated at lnx. This

essentially means that our only chance to deal with the integral is to make

u = lnx, so that we could potentially handle these integrals. We do this

substitution, noting that du = dx/x, so that we get (don’t forget to change

the limits of integration!)∫ eπ

1

cos(lnx) sin2(lnx)
x

dx =
∫ π

0

cosu sin2 udu

(for the limits of integration, note that for x = 1 we have u = ln 1 = 0,

and u(eπ) = ln(eπ) = π).

Now we have a trigonometric integral with both sin and cos, and it is thus

natural to substitute t = sinu, so that dt = cosudu. It seems we should

thus get (changing the limits of integration again!)∫ π

0

cosu sin2 udu =
∫ sin(π)

sin 0

t2dt =
∫ 0

0

t2dt = 0

However, this is cheating, as for substitution rule we really need to make

sure that u is an increasing everywhere (or decreasing everywhere func-

tion). So we should really compute the indefinite integral first, in terms

of x. The answer is, however, the same - try it!

3. Here again we see that sin is evaluated at some complicated point, so our

only chance is to substitute u = 1
x , so that du = − 1

x2 dx. We thus get

(careful with the limits of integration!)∫ 2/π

1/π

sin(1/x)
x2

dx =
∫ π/2

π

− sinudu = cosu|π/2π = 1
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Problem 3 Evaluate the following indefinite integral using integration by parts:

1. ∫
arcsin(x)dx

2. ∫ √
x ln2(x)dx

Solution:

1. In the first case we really do not have any choice for which parts to take:

we must set u = arcsinx, in which case we have simply dv = dx (this is

what is left in the formula, we must have
∫

arcsinxdx =
∫
udv), so that

v = x and du = 1√
1−x2 . We thus obtain∫

arcsin(x)dx = x arcsinx−
∫

x√
1− x2

dx.

For the second integral we substitute t = 1− x2 (otherwise we would not

be able to handle the square root), so that dt = −2xdx. So∫
x√

1− x2
dx =

∫
dt

−2t
= −1

2

∫
t−1/2dt = −t1/2 + c = −

√
1− x2 + c,

where we first substituted and then returned to the initial variable x. The

final answer is thus∫
arcsin(x)dx = x arcsinx+

√
1− x2 + c.

2. Here we recall that the derivative of lnx is 1/x, and thus we want to get

lnx differentiated. We thus set u = (lnx)2, so that dv =
√
xdx = x1/2dx

(if we chose say u = lnx, we would not be able to compute v). Then by

the chain rule for differentiation du = 2 ln x
x dx and v = 2

3x
3/2. Thus∫ √

x ln2 xdx =
2
3
x3/2 ln2 x−

∫
2 lnx
x

2
3
x3/2dx =

2
3
x3/2 ln2 x−4

3

∫
x1/2 lnxdx.

To deal with the integral that appeared here, we will need to again inte-

grate by parts, using similarly to the above u = lnx and dv = x1/2dx, so

that v = 2
3x

3/2 and du = dx
x . So∫

x1/2 lnxdx =
2
3
x3/2 lnx−

∫
2
3
x3/2 dx

x
=
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=
2
3
x3/2 lnx− 2

3

∫
x1/2dx =

2
3
x3/2 lnx− 4

9
x3/2 + c

and the final answer is then∫ √
x ln2 xdx =

2
3
x3/2 ln2 x− 8

9
x3/2 lnx+

16
27
x3/2 + c.
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Problem 4 Evaluate

lim
n→∞

∫ 2π

0

x sin(nx)dx

Solution:

We begin by evaluating the integral in its general form, for any value of n.

To do this, we first make the following substitution

t = nx, dt = ndx,

so that we have

x =
1
n
t, dx =

1
n
dt

Applying these substitutions to our original integral, we have (remember to

change the limits of integration!)∫ 2π

0

x sin(nx)dx =
∫ 2π

0

1
n
t sin(t)

1
n
dt =

1
n2

∫ 2nπ

0

t sin(t)dt

To continue doing the integral, we do an integration by parts with

u = t, dv = sin(t)dt

du = dt, v = − cos(t)

Performing integration by parts∫ 2nπ

0

x sin(nx)dx =
1
n2

∫ 2nπ

0

t sin(t)dt

=
1
n2

[−t cos(t)]2nπ0 − 1
n2

∫ 2nπ

0

− cos(t)dt =
1
n2

[−t cos(t)]2π0 +
1
n2

∫ 2nπ

0

cos(t)dt

=
1
n2

[−t cos(t)]2nπ0 +
1
n2

[sin(t)]2nπ0

=
1
n2

[(−2nπ cos(2nπ))− (−n0 cos(0))] +
1
n2

[(sin(2nπ))− (sin(0))]

=
1
n2

[(−2nπ)− (0)] +
1
n2

[(0)− (0)] = −2π
n

Taking the limit as n goes to infinity, the answer is

lim
n→∞

∫ 2π

0

x sin(nx)dx = lim
n→∞

−2π
n

= 0.

8



Problem 5 Decompose a rational function into partial fractions

x3 − 6x
x2 + 4x+ 4

Solution:

Since the degree of the polynomial on top is more than on the bottom, we

begin by performing long division: multiplying x2 + 4x+ 4 by x yields

x3 + 4x2 + 4x.

Subtracting this from

x3 − 6x

yields

−4x2 − 10x

multiplying x2 + 4x+ 4 by −4 yields

−4x2 − 16x− 16

subtracting this from −4x2 − 10x yields

6x+ 16

So we know that
x3 − 6x

x2 + 4x+ 4
= x− 4 +

6x+ 16
x2 + 4x+ 4

We note that x2 + 4x+ 4 = (x+ 2)2, and thus we cannot expect to have

6x+ 16
x2 + 4x+ 4

=
A

x+ 2
.

Instead we would expect to have

6x+ 16
(x+ 2)2

=
A

x+ 2
+

B

(x+ 2)2
.

When we clear the denominators by multiplying by (x + 2)2, we end up with

the equation

6x+ 16 = A(x+ 2) +B
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which must be satisfied for all x. Thus from the coefficient of x we see that

A = 6, and then B = 16− 2A = 4.

So our answer is

x3 − 6x
x2 + 4x+ 4

= x− 4 +
6

x+ 2
+

4
(x+ 2)2

.

Problem 6 Evaluate the integral∫ 1

0

x+ 1
x2 + 9

dx

Solution: We split the integral into two summands, writing∫ 1

0

x+ 1
x2 + 9

dx =
∫ 1

0

x

x2 + 9
dx+

∫ 1

0

1
x2 + 9

dx.

For the first summand we are going to substitute u = x2 +9, so that du = 2xdx.

We then get∫ 1

0

x

x2 + 9
dx =

1
2

∫ u(1)

u(0)

du

u
=

1
2

∫ 10

9

du

u
=

1
2

lnu
∣∣∣∣10
9

=
1
2

(ln(10)− ln 9).

For the second summand we recognize this as something similar to the

arctan. Indeed, to bring it to the standard form we will need to substitute

x = 3u, so that dx = 3du (and we have u = x/3). The integral is then∫ 1

0

1
x2 + 9

dx =
∫ u(1)

u(0)

3du
(3u)2 + 9

=
∫ 1/3

0

du

3(u2 + 1)

=
1
3

arctanu
∣∣∣∣1/3
0

=
1
3

(arctan(1/3)− arctan 0) =
arctan(1/3)

3

since tan 0 = 0, and thus arctan 0 = 0. The final answer is thus

ln(10)− ln 9
2

− arctan(1/3)
3

.
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Problem 7 Can the midpoint approximation to the integral∫ 2

1

1
x2

with n = 100 be equal to

• 1
7 .

• 1
5

To get a full credit you need to justify your answer

Solution:

1. Calculating the integral
∫ 2

1
1
x2 dx we get:∫ 2

1

1
x2
dx = − 1

x

∣∣∣∣2
1

= −
(

1
2
− 1

1

)
=

1
2

2. Then, we can use the formula for the error bound of the Midpoint rule:

|EM | ≤
K(b− a)3

24n2

where |f ′′(x)| ≤ K.

Note that in our case f(x) = 1
x2 . Therefore f ′(x) = −2

x3 and f ′′(x) = 6
x4 .

Since 1 ≤ x ≤ 2, we have that 6
24 ≤ 6

x4 ≤ 6. So, we can use K = 6 for the

error bound of the midpoint approximation.

|EM | ≤
6 · (2− 1)3

24 · 1002
=

1
40000

3. By all the above we have that:

1
2
− 1

40000
≤M100 ≤

1
2

+
1

40000

which means that the approximation M100 is very close to the value of the

integral, which is 1
2 . Therefore, M100 cannot be equal to 1

5 ,
1
7 which are

both much less than 1
2 −

1
40000 .
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