1. A liquid leaked from a tank at a rate $r(t)$, where r is in liters per hour, and t is in hours. The rate decreased as time passed. This rate was measured every 2 hours, and the result is given below. Find an upper estimate for the total amount of oil that has leaked out after 6 hours.

t	0	2	4	6
$\mathrm{r}(\mathrm{t})$	9	7.5	7	6

Solution: We are being asked to calculate a Riemann sum. Since the rate of leakage was decreasing, the left sum will give us an upper estimate. There are 6 hours involved, measured every 2 hours, we will have a sum with 3 rectangles, each of width 2.

Our estimate is

$$
2 r(0)+2 r(2)+2 r(4)=2 \cdot 9+2 \cdot 7.5+2 \cdot 7=47
$$

There should be no more than 47 liters of oil that leaked out during the 6 hours. (Note that we do NOT want to use $r(6)$ in our estimate, since that would tell us about what happened AFTER the 6th hour ended.
(Although it wasn't asked, we could do a right sum to get a lower bound on the amount of oil lost. In this case, we would get $2 r(2)+2 r(4)+2 r(6)=41$, so the total amount of oil that leaked in the given period was between 41 and 47 liters.)
2.

$$
\int_{2}^{3} f(x) d x=1 / 3, \quad \int_{3}^{5} f(x) d x=6, \quad \int_{2}^{5} g(x) d x=4 / 5 .
$$

Find

$$
\int_{2}^{5}(g(x)+4 f(x)+5) d x
$$

Solution: We rewrite this in terms of what we are given. We have

$$
\int_{2}^{5}(g(x)+4 f(x)+5) d x=\int_{2}^{5} g(x) d x+4 \int_{2}^{5} f(x) d x+\int_{2}^{5} 5 d x .
$$

The first integral is given as $4 / 5$, and the last is the area of a 5×3 rectangle, so it is 15 . To do the middle integral, we use the fact that $\int_{2}^{5} f(x) d x=\int_{2}^{3} f(x) d x+\int_{3}^{5} f(x) d x=1 / 3+6$. This means we have

$$
\int_{2}^{5}(g(x)+4 f(x)+5) d x=\frac{4}{5}+4\left(6+\frac{1}{3}\right)+15=\frac{617}{15}
$$

Sorry about the fractions...
3. Express the integral as the limit of Riemann sums. Do not evaluate the limit. Do not use Δx or x_{i}^{*} in your final answer; instead, plug in the formulas for these.

$$
\int_{2}^{12} \frac{\sqrt[3]{x} d x}{2+3 x}
$$

Solution: Let's write this as a right sum with n equal rectangles.
The width Δx of each rectangle will be $\frac{12-2}{n}=\frac{10}{n}$.
Since we are doing right sums, we divide the interval $[2,10]$ into n pieces, and choose our x_{i}^{*} on the right (larger) side of each piece. Thus, we have $x_{1}^{*}=2+\frac{10}{n}, x_{2}^{*}=2+\frac{20}{n}, x_{3}^{*}=2+\frac{30}{n}$, and so on. More compactly, we can write this as

$$
x_{i}^{*}=2+\frac{10 i}{n} \quad i \leq i \leq n .
$$

This means that the area of the $i^{t h}$ rectangle will be

$$
(\Delta x) f\left(x_{i}^{*}\right)=\left(\frac{10}{n}\right) f\left(2+\frac{10 i}{n}\right)=\left(\frac{10}{n}\right) \frac{\sqrt[3]{2+\frac{10 i}{n}}}{2+3\left(2+\frac{10 i}{n}\right)}=\frac{10 \sqrt[3]{2+\frac{10 i}{n}}}{8 n+30 i}
$$

and so we have the area with n rectangles as $R_{n}=\sum_{i=1}^{n} \frac{10 \sqrt[3]{2+\frac{10 i}{n}}}{8 n+30 i}$.
Since the exact value of the integral is the limit as the number of rectangles goes to infinity, we have

$$
\int_{2}^{12} \frac{\sqrt[3]{x} d x}{2+3 x}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{10 \sqrt[3]{2+\frac{10 i}{n}}}{8 n+30 i}
$$

4. Let $f(w)=\frac{w^{4}-2 w^{2} \sqrt{w}}{w}$.
(a) Find $f^{\prime}(w)$.

Solution: Observe that $f(w)=w^{3}-2 w^{3 / 2}$. So $f^{\prime}(w)=3 w^{2}-3 w^{1 / 2}$.
(b) Find $\int f(w) d w$.

Solution:

$$
\int f(w) d w=\int w^{3}-2 w^{3 / 2} d w=\frac{1}{4} w^{4}-2 \cdot \frac{2}{5} w^{5 / 2}+C=\frac{w^{4}}{4}-\frac{4 w^{5 / 2}}{5}+C
$$

5. Simplify.
(a) $\frac{d}{d x}\left(\int_{\pi}^{e^{x}} 3 \cos t d t\right)$.

Solution: We use the fundamental theorem of calculus, and remember that we must use the chain rule (since the upper bound of integration is not x):

$$
\frac{d}{d x}\left(\int_{\pi}^{e^{x}} 3 \cos t d t\right)=3 \cos \left(e^{x}\right) \cdot\left(\frac{d}{d x} e^{x}\right)=3 e^{x} \cos \left(e^{x}\right)
$$

(b) $\int\left(2 x^{-1}+7 \sin x\right) d x$

Solution:

$$
\int\left(2 x^{-1}+7 \sin x\right) d x=2 \ln |x|-7 \cos (x)+C
$$

6. The velocity of a particle at time t is given by $v(t)=3 t^{2}-1$. The position of the particle at time $t=0$ is 1 . Find the position of the particle at time $t=3$.

Solution: We remember that if $s(t)$ is the position at time t, the velocity is $v(t)=s^{\prime}(t)$. We have to find an the antiderivative $s(t)=\int v(t) d t$ for which $s(0)=1$.

$$
s(t)=\int 3 t^{2}-1 d x=t^{3}-t+C
$$

Since $s(0)=1$, we must have $C=1$. Thus

$$
s(t)=t^{3}-t+1
$$

This means the position at $t=3$ is $s(3)=27-3+1=25$.
7. Consider the following integral

$$
\int_{1}^{2} 3+2 x d x
$$

(a) Express the integral as the limit of Riemann sums. Do not evaluate the limit. Do not use Δx or x_{i}^{*} in your final answer; instead, plug in the formulas for these.

Solution: First, we write the right approximation with n rectangles (right, left, midpoint, \ldots any will do). Since we have $\Delta x=(2-1) / n=1 / n$, we also have $x_{i}^{*}=1+i / n$. Thus,

$$
R_{n}=\sum_{i=0}^{n}\left(\frac{1}{n}\right)\left(3+2\left(1+\frac{i}{n}\right)\right)=\sum_{i=0}^{n}\left(\frac{5}{n}+\frac{2 i}{n^{2}}\right)
$$

Taking the limit as $n \rightarrow \infty$ gives us the integral:

$$
\int_{1}^{2} 3+2 x d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n}\left(\frac{5}{n}+\frac{2 i}{n^{2}}\right)
$$

(b) Use the formula $\sum_{i=1}^{n} i=\frac{n^{2}+n}{2}$ to evaluate the limit in the previous part. DO NOT CALCULATE THE INTEGRAL DIRECTLY, or you will get no credit.

Solution: In order to compute the limit, it will probably help to rearrange the above answer a bit first.
Observe that $\sum_{1}^{n} 1=1+1+\ldots+1=n$. We have

$$
\sum_{i=0}^{n}\left(\frac{5}{n}+\frac{2 i}{n^{2}}\right)=\frac{5}{n} \sum_{i=0}^{n} 1+\frac{2}{n^{2}} \sum_{i=0}^{n} i=\frac{5}{n} \cdot n+\frac{2}{n^{2}}\left(\frac{n^{2}+n}{2}\right)=5+\frac{n^{2}+n}{n^{2}}
$$

Thus, we have

$$
\int_{1}^{2} 3+2 x d x=\lim _{n \rightarrow \infty}\left(5+\frac{n^{2}+n}{n^{2}}\right)=5+1=6 .
$$

Just to make sure we didn't do something stupid, we can check our answer by calculating the definite integral

$$
\int_{1}^{2} 3+2 x d x=3 x+\left.x^{2}\right|_{1} ^{2}=(6+4)-(3+1)=6
$$

But doing that is worth no credit, just peace of mind.

