MAT 126 Solutions to Midterm 2 (Space)

1. Compute each of the following definite integrals. If the integral does not converge, write "Diverges". In all cases you must justify your answer to receive full credit.
(a) $\int_{2}^{\infty} \frac{d x}{x^{2}}$

Solution:

$$
\int_{2}^{\infty} \frac{d x}{x^{2}}=\lim _{M \rightarrow \infty} \int_{2}^{M} x^{-2} d x=\left.\lim _{M \rightarrow \infty} \frac{x^{-1}}{-1}\right|_{2} ^{M}=\lim _{M \rightarrow \infty}\left(\frac{-1}{M}+\frac{1}{2^{1}}\right)=0+\frac{1}{2}=\frac{1}{2}
$$

(b) $\int_{0}^{\pi / 2} \sin (y) \cos ^{3}(y) d y$

Solution: Make the substitution $u=\cos (y)$ so that $d u=-\sin (y) d y$. Also, when $y=0$ we have $u=\cos (0)=1$, and when $y=\pi / 2, u=\cos (\pi / 2)=0$. Then the integral becomes

$$
-\int_{1}^{0} u^{3} d u=\left.\frac{u^{4}}{4}\right|_{0} ^{1}=\frac{1}{4}-0=\frac{1}{4}
$$

10 pts
(c) $\int_{0}^{4} \frac{d z}{(z-1)^{5}}$

Solution: $\frac{1}{(z-1)^{5}}$ is not defined when $z=1$, so we must split the integral at $z=1$:

$$
\begin{aligned}
\int_{0}^{1} \frac{d z}{(z-1)^{5}}+\int_{1}^{4} \frac{d z}{(z-1)^{5}} & =\lim _{b \rightarrow 1^{-}} \int_{0}^{b} \frac{d z}{(z-1)^{5}}+\lim _{a \rightarrow 1^{+}} \int_{a}^{4} \frac{d z}{(z-1)^{5}} \\
& =\lim _{b \rightarrow 1^{-}}\left(\frac{1}{4(b-1)^{4}}-\frac{1}{4(-1)^{4}}\right)+\lim _{a \rightarrow 1^{+}}\left(\frac{1}{4(3)^{4}}-\frac{1}{4(a-1)^{4}}\right)
\end{aligned}
$$

Since $\lim _{a \rightarrow 1^{+}}\left(1 /(a-1)^{4}\right.$ and $\lim _{b \rightarrow 1^{-}}\left(1 /(b-1)^{4}\right.$ both diverge, the integral diverges.
2. At right is shown the graph of the function

$$
f(x)= \begin{cases}\frac{\sin \pi x}{x} & x \neq 0 \\ \pi & x=0\end{cases}
$$

(a) Use the trapezoid method with 4 intervals to approximate the value of $\int_{-1}^{1} f(x) d x$.

Solution: In case you didn't memorize the formula (I never do), remember from middle school that the area of a trapezoid is the length of the base times the average of the heights of the two sides. Each base is of length $1 / 2$, so we have

$$
\frac{1}{2}\left(\frac{1}{2}(0+2)+\frac{1}{2}(2+\pi)+\frac{1}{2}(\pi+2)+\frac{1}{2}(2+0)\right)=\frac{1}{4}(4 \cdot 2+2 \pi)=2+\frac{\pi}{2}
$$

You might have used $f(\pm 1 / 2)=5 \pi / 8$, but this is only close: $f(1 / 2)=2$, and $5 \pi / 8 \approx 1.9635$.
(b) Estimate the error ${ }^{1}$ in your answer in the previous part. You might find it helpful to know that $\left|f^{\prime}(x)\right|<13 / 3$ or that $-21 / 2<-\pi^{3} / 3 \leq f^{\prime \prime}(x) \leq 2 \pi<13 / 2$ for $|x| \leq 1$.

Solution: Note that we want $K=\max \left|f^{\prime \prime}(x)\right|$, and since $\left|-\pi^{3} / 3\right|>|2 \pi|$, we must use the absolute value of negative bound on $f^{\prime \prime}$. Taking $K=21 / 2$ gives us

$$
E_{T}<\frac{21 / 2 \cdot 2^{3}}{12 \cdot 4^{2}}=\frac{7}{16}=0.4375 .
$$

We get a slightly better estimate using $K=\pi^{3} / 3$ instead: $\frac{\pi^{3}}{72} \approx .4307$. Either is fine.
The actual error is the approximation from the first part is closer to 0.133078 . But you can't know that without computing the integral to fairly high precision first.
(c) How many intervals are required to ensure that the error is less than $1 / 100$ when using the trapezoid rule to estimate this integral?

Solution: Taking $K=21 / 2$ as above, we need to find n so that $\frac{21 / 2 \cdot 8}{12 n^{2}}<\frac{1}{100}$. Rewriting, we want

$$
n^{2}>100 \cdot \frac{4 \cdot 21}{12}=700 \text { that is } n>10 \sqrt{7} \approx 26.46
$$

So we should take $n \geq 27$.

[^0]15 pts 3. Evaluate the indefinite integral $\int \frac{2 d x}{(x+1)\left(x^{2}+1\right)}$.
Use K for an unknown constant. You must show all steps to receive credit.

Solution: We need to use partial fractions. Write $\frac{2 d x}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}$, then cross-multiply to obtain $A\left(x^{2}+1\right)+(B x+C)(x+1)=2$. We can then find A, B and C either by equating coeeficients (I don't like to do that) or by choosing values of x and solving.

- Let $x=-1$ to obtain $A(2)+0=2$, so $A=1$.
- Now we have $x^{2}+1+(B x+C)(x+1)=2$. Taking $x=0$ gives $(0+C)(1)=1$ so $C=1$.
- This leaves us with $x^{2}+(B x+1)(x+1)=1$. Take $x=1$ to get $1+(B+1)(2)=1$, so $B+1=0$ and hence $B=-1$.

This means we have

$$
\begin{aligned}
\int \frac{2 d x}{(x+1)\left(x^{2}+1\right)}=\int \frac{1}{x+1}+\frac{-x+1}{x^{2}+1} d x & =\int \frac{1}{x+1}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1} d x \\
& =\ln |x+1|-\frac{1}{2} \ln \left(x^{2}+1\right)+\arctan (x)+K
\end{aligned}
$$

15 pts 4. Find the average value of $f(x)=x^{2}$ for $-2 \leq x \leq 1$.

Solution:

$$
\frac{1}{1-(-2)} \int_{-2}^{1} x^{2} d x=\left.\frac{1}{3} \frac{x^{3}}{3}\right|_{-2} ^{1}=\frac{1}{3 \cdot 3}(1+8)=\frac{9}{9}=1 .
$$

5. Let R be the region with $x \geq 0$ and bounded by the graphs of $y=x^{2}+2$ and $y=x+4$.
(a) Calculate the area of the region R.

Solution: The graph of the region R is shown at right.
The graphs cross when $x^{2}+2=x+4$, that is when $x=-1$ and $x=2$. Since we want $x \geq 0$, the area of R is given by

$$
\begin{aligned}
\int_{0}^{2}(x+4)-\left(x^{2}+2\right) d x & =\int_{0}^{2}-x^{2}+x+2 d x \\
& =-\frac{x^{3}}{3}+\frac{x^{2}}{2}+\left.2 x\right|_{0} ^{2} \\
& =-\frac{8}{3}+\frac{4}{2}+4=6-\frac{8}{3}=\frac{10}{3}
\end{aligned}
$$

15 pts (b) Calculate the volume of the solid obtained by rotating R around the x-axis.
Solution: An image of the solid is shown below.
It is easiest to slice this by varying x; a typical slice is a washer with inner radius $x^{2}+2$ and outer radius $x+4$. The volume of a washer of thickness $d x$ at a given x value will be

$$
\pi\left((x+4)^{2}-\left(x^{2}+2\right)^{2}\right) d x
$$

so the volume is given by the integral

$$
\int_{0}^{2} \pi\left((x+4)^{2}-\left(x^{2}+2\right)^{2}\right) d x=\pi \int_{0}^{2} 12+8 x-3 x^{2}-x^{4} d x=\frac{128 \pi}{5}
$$

[^0]: ${ }^{1}$ The max. error in the trapezoid approximation to $\int_{a}^{b} f(x) d x$ using n intervals is $\frac{K(b-a)^{3}}{12 n^{2}}$, where $K \geq\left|f^{\prime \prime}(x)\right|$ for all $a \leq x \leq b$. Also, $\sqrt{2} \approx 1.414, \sqrt{3} \approx 1.732, \sqrt{7} \approx 2.646, \sqrt{13} \approx 3.606$ and $\sqrt{21} \approx 4.583$.

