MATH 126

20 pts 1. A passenger plane touches down at Laguardia with a ground speed of 200 feet per second (about 136 mph). The pilot then reverses the engines to slow the plane down to $30 \mathrm{ft} / \mathrm{sec}$, at which speed she can safely taxi to the gate. The table below gives the speed at t seconds after touchdown.

time (seconds)	0	2	4	6	8
speed (ft/sec)	200	160	100	40	30

Using the information above and assuming the plane's speed is decreasing continuously, use a Riemann sum to calculate both an upper bound and a lower bound on the distance the plane traveled (in feet) during the 8 seconds after touchdown.
For full credit, you must indicate clearly how you arrived at each answer.

Solution: Let $v(t)$ be the velocity at the t th second. Since $v(t)$ is decreasing, the upper bound will be given by the left sum, and the lower bound by the right sum.
Here we have the width of each rectangle as 2 , and we use 4 rectangles (since 5 points define 4 rectangles). The right sum is

$$
2(v(2)+v(4)+v(6)+v(8))=2(160+100+40+30)=660
$$

(which is a lower bound since the speed is decreasing), and the left sum is

$$
2(v(0)+v(2)+v(4)+v(6))=2(200+160+100+40)=1000 .
$$

This means that

$$
660 \text { feet } \leq \text { distance traveled } \leq 1000 \text { feet. }
$$

If you want to visualize this process graphically, see the image at right. This is, of course, not necessary, although some people drew a similar graph anyway.
The dashed curve represents a guess at $v(t)$ (the speed of the airplane), since we only know the speeds at the times in the chart.

2. Evaluate each of the integrals below.

Solution:

$$
\begin{aligned}
\int_{0}^{1} \frac{5 x+1}{1+x^{2}} d x & =\int_{0}^{1} \frac{5 x d x}{1+x^{2}}+\int_{0}^{1} \frac{d x}{1+x^{2}} \\
& =5 \int_{1}^{2} \frac{d u / 2}{u}+\left.\arctan (x)\right|_{0} ^{1}=\left.\frac{5}{2} \ln |u|\right|_{1} ^{2}+\left(\frac{\pi}{4}-0\right)=\frac{5}{2} \ln |2|+\frac{\pi}{4}
\end{aligned}
$$

where we made the substitution $u=1+x^{2}, d u=2 x d x$ in the first integral.
(b) $\int x \sqrt{x-1} d x$

Solution: Make the substitution $w=x-1$ so that $d w=d x$ and $x=w+1$ to get
$\int(w+1) w^{1 / 2} d x=\int w^{3 / 2}+w^{1 / 2} d w=\frac{2}{5} w^{5 / 2}+\frac{2}{3} w^{3 / 2}+C=\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C$.
You could also do this integral by parts, taking $u=x$ and $d v=\sqrt{x-1} d x$.
Then $d u=d x$ and $v=\frac{2}{3}(x-1)^{3 / 2}$, so we have

$$
\int x \sqrt{x-1} d x=\frac{2}{3} x(x-1)^{3 / 2}-\frac{2}{3} \int(x-1)^{3 / 2} d x=\frac{2}{3} x(x-1)^{3 / 2}-\frac{4}{15}(x-1)^{5 / 2}+C .
$$

A little algebra shows these apparently different answers are, in fact, equal.
(c) $\int_{0}^{2 \pi}|\sin x| d x$

Solution: First, notice that $\sin x \leq 0$ for $\pi \leq x \leq 2 \pi$, so $|\sin x|=\sin x$ for $0 \leq x \leq \pi$ but $|\sin x|=-\sin x$ when $\pi \leq x \leq 2 \pi$. This means we have

$$
\begin{aligned}
\int_{0}^{2 \pi}|\sin x| d x & =\int_{0}^{\pi} \sin x d x-\int_{\pi}^{2 \pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}+\left.\cos x\right|_{\pi} ^{2 \pi} \\
& =(-\cos (\pi)+\cos (0))+(\cos (2 \pi)-\cos (\pi))=(1+1)+(1+1)=4
\end{aligned}
$$

8 pts
(d) $\int x e^{2 x} d x$

Solution: Here we integrate by parts. Take $u=x$ and $d v=e^{2 x} d x$, so $d u=d x$ and $v=\int e^{2 x} d x=\frac{e^{2 x}}{2}$. Then we have

$$
\int x e^{2 x} d x=\frac{x e^{2 x}}{2}-\int \frac{e^{2 x}}{2} d x=\frac{x e^{2 x}}{2}-\frac{e^{2 x}}{4}+C .
$$

3. Let $g(t)$ be the function with graph shown at right, and let

$$
F(x)=\int_{-2}^{x} g(t) d t
$$

for $-2 \leq x \leq 5$.
For full credit, give at least a little justification for each of your answers to the questions below.

(a) On what interval(s) is $F(x) \leq 0$?

If there are none, write "None".
Solution: Observe that the (signed) area between the graph and the axis for $-2<x<1$ is a triangle with base 1 , height -2 , so this area is -2 . Similarly, the area for x between 1 and 0 is +2 . Thus, $F(x)$ is negative in this region. However, for $0<x<5$, we have $g(t)>0$ and there is a total area of +7 for $0<x<5$, hence $F(x)$ is positive here. Finally, while the area for x between 4 and 5 is $-1, F(x)$ remains positive (since $F(4)=7$ and $F(5)=6$). Thus

$$
F(x) \leq 0 \text { for }-2 \leq x \leq 0 \text { (and nowhere else). }
$$

5 pts (b) What is $F(3)$?
If $F(3)$ is not defined, write "DNE".
Solution: Since $F(0)=0$ (see above), we just need to count the boxes in the rectangle with base between $x=0$ and $x=3$ to obtain

$$
F(3)=6 .
$$

(c) What is $F^{\prime}(0)$?

If $F^{\prime}(0)$ does not exist, write "DNE".
Solution: By the Fundamental Theorem of Calculus, we have $\quad F^{\prime}(0)=g(0)=2$.
5 pts
(d) What is $F^{\prime \prime}(4)$?

If $F^{\prime \prime}(4)$ does not exist, write "DNE".
Solution: Since $F^{\prime}(x)=g(x)$, we have $F^{\prime \prime}(x)=g^{\prime}(x)$. The part of the graph of $g(x)$ between $x=3$ and $x=5$ is a line with slope -2 , so

$$
F^{\prime \prime}(4)=g^{\prime}(4)=-2
$$

4. Let $h(x)=x^{2}+2 x+2$.
(a) Use a Riemann sum with three rectangles, evaluated on the right-hand side, to approximate $\int_{-4}^{2} h(x) d x$.
Solution: Since we have $a=-4$ and $b=2$ and are using three rectangles, the width of each is $\Delta x=(2+4) / 3=2$, and the relevant points are $x_{0}=-4, x_{1}=-2, x_{2}=0$, and $x_{3}=2$.
Evaluating on the right, we have

$$
2(h(-2)+h(0)+h(2))=2(2+2+10)=28
$$

(b) Express $\int_{-4}^{2} x^{2}+2 x+2 d x$ as a limit of a Riemann sum (with n rectangles). Your final answer should not include symbols like Δx or x_{i}.

Solution: Recall that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=(b-a) / n$ and $x_{i}=a+\Delta x$.
In this case, we have $\Delta x=6 / n$ and so $x_{i}=\frac{6 i}{n}-4$, giving

$$
\int_{-4}^{2} h(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} h\left(\frac{6 i}{n}-4\right) \frac{6}{n}=\lim _{n \rightarrow \infty} \frac{6}{n} \sum_{i=1}^{n}\left(\left(\frac{6 i}{n}-4\right)^{2}+2\left(\frac{6 i}{n}-4\right)+2\right) .
$$

8 pts (c) Calculate $\int_{-4}^{2} x^{2}+2 x+2 d x$ exactly.

Solution: (Unfortunately, there was a typo on the exam and $\int_{-4}^{2} x^{2}+3 x+2 d x$ was asked for. Some people fixed it, some didn't.)

$$
\begin{aligned}
\int_{-4}^{2} x^{2}+2 x+2 d x & =\frac{x^{3}}{3}+x^{2}+\left.2 x\right|_{-4} ^{2} \\
& =\left(\frac{8}{3}+4+4\right)-\left(\frac{-64}{3}+16-8\right)=\frac{72}{3}+0=24
\end{aligned}
$$

If you didn't fix the typo, the following solution is also correct:

$$
\begin{aligned}
\int_{-4}^{2} x^{2}+3 x+2 d x & =\frac{x^{3}}{3}+\frac{3 x^{2}}{2}+\left.2 x\right|_{-4} ^{2} \\
& =\left(\frac{8}{3}+6+4\right)-\left(\frac{-64}{3}+24-8\right)=\frac{72}{3}-6=18
\end{aligned}
$$

15 pts 5. Calculate the indefinite integral $\int e^{x} \sin (4 x) d x$.
Solution: Integrating by parts with $u=\sin (4 x)$ and $d v=e^{x} d x$, we have $d u=4 \cos (4 x) d x$ and $v=e^{x}$, giving

$$
\int e^{x} \sin (4 x) d x=e^{x} \sin (4 x)-4 \int e^{x} \cos (4 x) d x
$$

Integrate by parts again (with $u=\cos (4 x)$ and $d v=e^{x} d x$, so $d u=-4 \sin (4 x) d x$ and $v=e^{x}$) to obtain

$$
\begin{aligned}
\int e^{x} \sin (4 x) d x & =e^{x} \sin (4 x)-4\left(e^{x} \cos (4 x)+4 \int e^{x} \sin (4 x) d x\right) \\
& =e^{x} \sin (4 x)-4 e^{x} \cos (4 x)-16 \int e^{x} \sin (4 x) d x
\end{aligned}
$$

Adding $16 \int e^{x} \sin (4 x) d x$ to both sides gives

$$
17 \int e^{x} \sin (4 x) d x=e^{x} \sin (4 x)-4 e^{x} \cos (4 x)
$$

and so

$$
\int e^{x} \sin (4 x) d x=\frac{e^{x} \sin (4 x)-4 e^{x} \cos (4 x)}{17}+C
$$

Note that you could also do this by parts taking $u=e^{x}$ and $d v=\sin (4 x)$. The constants are a bit messier, but it works about the same way.
We have $d u=e^{x} d x$ and $v=-\frac{1}{4} \cos (4 x)$, giving

$$
\int e^{x} \sin (4 x) d x=-\frac{e^{x}}{4} \cos (4 x)+\frac{1}{4} \int e^{x} \cos (4 x) d x
$$

Integrate by parts again (with $u=e^{x}$ and $d v=\cos (4 x) d x$, so $d u=e^{x} d x$ and $v=\frac{1}{4} \sin (4 x)$) to obtain

$$
\begin{aligned}
\int e^{x} \sin (4 x) d x & =-\frac{e^{x}}{4} \cos (4 x)+\frac{1}{4}\left(\frac{e^{x}}{4} \sin (4 x)-\frac{1}{4} \int e^{x} \sin (4 x) d x\right) \\
& =-\frac{e^{x}}{4} \cos (4 x)+\frac{e^{x}}{16} \sin (4 x)-\frac{1}{16} \int e^{x} \sin (4 x) d x
\end{aligned}
$$

Adding $\frac{1}{16} \int e^{x} \sin (4 x) d x$ to both sides gives

$$
\frac{17}{16} \int e^{x} \sin (4 x) d x=\frac{e^{x}}{16} \sin (4 x)-\frac{e^{x}}{4} \cos (4 x)=\frac{e^{x} \sin (4 x)-4 e^{x} \cos (4 x)}{16}
$$

and then multiplying both sides by $\frac{16}{17}$ gives the same answer as above, namely

$$
\int e^{x} \sin (4 x) d x=\frac{e^{x} \sin (4 x)-4 e^{x} \cos (4 x)}{17}+C
$$

