
Today 'sTopic : Volumes
we learnt how to calculate area

,
but what about

volumes?

Consider : cylinder of radius r , length h .
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How can we translate this into a question
involving integrals ?
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Idea : we take a slice at each x- value ,
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We can also use this idea for more complicated
shapes :
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This is called the "

diskmethodYV-f.baAlx) dx

AH = cross sectional
area at × .



Example : Cylinder .
A (x) = TR2

.
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In general : at each × , we get disk with
radius

y= fix
) .

So A(x) = +%)?
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Thus V =/n-lflxwhdx.ae
Example : Find the volume of the solid obtained

by rotating about the x-axis the region
under the curve y=Tx from 0 to 1 .
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Area of each disk :

A-(x) = IT / fLxÑ= 11-15×5=117 .
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Example : Find volume of solid obtained by rotating
the region bounded by y= ✗

3

, y=8
and ✗ = 0 about the y-axis .
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We want to take horizontal slices .
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YY3 .

Cross-sectional area :
A(g) = IT ( y

'B)2 = IT YH3 .
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Example : Find the volume of the solid obtained
by rotating the area enclosed by
y=× ; y

= ✗
2
about the x -

'

axis
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Each slice :
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outer radius = ×

/ inner radius = ✗
2
.

/ { (• Alx) = area ofouterdisk - area of
inner disk .
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= IT ( ✗2- ✗4) .

✓ = fb AW dx
:

=/
•

IT (x2 - x
" ) dx



⇒ 1¥ - ¥1 !
= 2¥ .


