
MAT126 Fall 2009

Practice Final
The actual Final exam will consist of twelve problems

1



Problem 1 1. Evaluate
∫ π/2

π/3
sin3(x) cos2(x)dx

2. Evaluate
∫

sin2(x)dx

Solution:

1. First, recognize that the integrand consists of sin(x) raised to an odd power,

multiplied by cos(x) raised to an even power. Such a function is a prime candidate for

the substitution u = cos(x) (so that one of the sin(x) can be used for the change of

variable, and the rest may be expressed in terms of cos(x) via the identity sin2(x) =

1 − cos2(x)).

Therefore we substitute u = cos(x), whereby du = − sin(x)dx, and we can write

(noting that u = cos(π/3) = 1/2 when x = π/3, and u = cos(π/2) = 0 when x = π/2)

∫ x=π/2

x=π/3

sin3(x) cos2(x)dx =

∫ x=π/2

x=π/3

(− sin2(x) cos2(x))(− sin(x)dx)

=

∫ x=π/2

x=π/3

(−1 + cos2(x))(cos2(x))(− sin(x)dx)

=

∫ u=0

u=1/2

(u2 − 1)(u2)du

=

∫ u=0

u=1/2

(u4 − u2)du

=
u5

5
−

u3

3

∣

∣

∣

∣

∣

∣

u=0

u=1/2

=

(

(0)5

5
−

(0)3

3

)

−
(

(1/2)5

5
−

(1/2)3

3

)

= −2−5

5
+

2−3

3

2. There are two ways to approach this problem. The first is to use the identity

cos(2x) = cos2(x) − sin2(x) = 1 − 2 sin2(x)

to get

sin2(x) =
1

2
(1 − cos(2x))
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This implies that

∫

sin2(x)dx =

∫

1

2
(1 − cos(2x))dx

=

∫

1

2
dx −

∫

1

2
cos(2x)dx

=
1

2
x − 1

2

∫

cos(2x)dx

=
1

2
x −

1

2

sin(2x)

2
+C

=
1

2
x −

1

4
sin(2x) +C

The second approach is to use an integration by parts, setting u = sin x and dv =

sin xdx; this means that du = cos xdx and v = − cos x. Therefore, integration by parts

gives

∫

sin2(x)dx = (sin x)(− cos x) −
∫

(− cos x)(cos xdx) = − sin x cos x +

∫

cos2(x)dx

Now we plug in the identity cos2(x) = 1 − sin2(x) to get

∫

sin2(x)dx = − sin x cos x +

∫

(1 − sin2(x))dx = − sin x cos x +

∫

dx −
∫

sin2(x)dx

Adding
∫

sin2(x)dx to both sides of the equation gives

2

∫

sin2(x)dx = − sin(x) cos(x) +

∫

dx = − sin(x) cos(x) + x +C

so that
∫

sin2(x)dx =
1

2
x −

1

2
sin(x) cos(x) +C

Notice that both approaches give the same answer, because of the identity sin(2x) =

2 sin(x) cos(x).
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Problem 2 1. Estimate the integral

8
∫

7

dx

ln(x)

using three rectangles and

(a) right endpoints

(b) left endpoints

(c) Are your answers in 1a and 1b over- or under-estimates of the actual inte-

gral?

2. Do the same for the under-integral function f (t) = et3

Solution:

1. The problem asks for three rectangles, so we divide the interval [7, 8] into three

equal subintervals:
[

7, 7
1

3

] [

7
1

3
, 7

2

3

] [

7
2

3
, 8

]

Each subinterval has length 1
3
.

(a) For right endpoints, evaluate f (x) = 1
ln(x)

at the right endpoint of each subinter-

val, and multiply the sum by 1
3
, the length of the subintervals:

1

3

[

f

(

7
1

3

)

+ f

(

7
2

3

)

+ f (8)

]

=
1

3

















1

ln
(

7 1
3

) +
1

ln
(

7 2
3

) +
1

ln(8)

















(b) For left endpoints, evaluate f (x) = 1
ln(x)

at the left endpoint of each subinterval,

and multiply the sum by 1
3
, the length of the subintervals:

1

3

[

f (7) + f

(

7
1

3

)

+ f

(

7
2

3

)]

=
1

3

















1

ln(7)
+

1

ln
(

7 1
3

) +
1

ln
(

7 2
3

)

















(c) First, notice that the function ln(x) is an increasing function of x, so that f (x) =

1
ln(x)

is a decreasing function of x. Since f (x) is decreasing, the right endpoint f (xi)

is always less than the other values of f (x) in the subinterval [xi−1, xi], and the left

endpoint f (xi−1) is always greater than the other values in the subinterval. Thus the
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right endpoint approximation from part (a) is an under-estimate, and the left endpoint

approximation from part (b) is an over-estimate.

2. As in (1), we divide the interval [7, 8] into three equal subintervals:

[

7, 7
1

3

] [

7
1

3
, 7

2

3

] [

7
2

3
, 8

]

of length 1
3
.

(a) For right endpoints, evaluate f (x) = et3

at the right endpoint of each subinterval,

and multiply the sum by 1
3
, the length of the subintervals:

1

3

[

f

(

7
1

3

)

+ f

(

7
2

3

)

+ f (8)

]

=
1

3

(

e(7 1
3 )

3

+ e(7 2
3 )

3

+ e83
)

(b) For left endpoints, evaluate f (x) = 1
ln(x)

at the left endpoint of each subinterval,

and multiply the sum by 1
3
, the length of the subintervals:

1

3

[

f (7) + f

(

7
1

3

)

+ f

(

7
2

3

)]

=
1

3

(

e73

+ e(7 1
3 )

3

+ e(7 2
3 )

3
)

(c) First, notice that the function x3 is an increasing function of x, and ex is also an

increasing function of x, so that f (x) = ex3

is an increasing function of x. Since f (x)

is increasing, the right endpoint f (xi) is always greater than the other values of f (x)

in the subinterval [xi−1, xi], and the left endpoint f (xi−1) is always less than the other

values in the subinterval. Thus the right endpoint approximation from part (a) is an

over-estimate, and the left endpoint approximation from part (b) is an under-estimate.
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Problem 3 Integrate

1.
∫

cos(ln(x))dx

2.
∫

e
√

xdx

Solution:

1. The first thing to recognize is the presence of a composite function, cos(ln(x)),

in the integrand. This immediately suggests a substitution u = ln(x), or x = eu. This

implies that dx = eudu, and so we have

∫

cos(ln(x))dx =

∫

cos(u)dx =

∫

cos(u) · eudu

Observe that the integrand is the product of two functions, eu and cos(u), whose an-

tiderivatives are not too exotic— therefore this integral is a candidate for integration by

parts. Setting w = cos(u) and dv = eudu, we get that dw = − sin(u)du and v = eu, so

integration by parts gives

∫

cos(u)eudu = cos(u)eu −
∫

eu(− sin(u)du) = cos(u)eu +

∫

eu sin(u)du (1)

The integral on the right is again a candidate for integration by parts, this time setting

w = sin(u) and dv = eudu, whereby dw = cos(u)du and v = eu, so that

∫

eu sin(u)du = eu sin(u) −
∫

eu cos(u)du (2)

Plugging (2) into (1) gives

∫

cos(u)eudu = cos(u)eu +

∫

eu sin(u)du = cos(u)eu + eu sin(u) −
∫

eu cos(u)du

Adding
∫

eu cos(u)du to both sides gives

2

∫

cos(u)eudu = cos(u)eu + eu sin(u) +C

and we have
∫

cos(u)eudu =
1

2
eu(cos(u) + sin(u)) +C
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Plugging back in our substitution u = ln(x), we have

∫

cos(ln(x))dx =
1

2
eln(x)(cos(ln(x))+ sin(ln(x)))+C =

1

2
x(cos(ln(x))+ sin(ln(x)))+C

2. As with part (1), notice first that the composite function e
√

x suggests that the

substitution u =
√

x may be useful. This substitution gives x = u2, so that dx = 2udu.

Therefore
∫

e
√

xdx =

∫

eudx =

∫

eu · 2udu

Since the derivative of 2u is simpler than 2u (a polynomial of lower degree; in this

case, a constant), while the antiderivative of eu is not more complicated than eu (in this

case, the anti-derivative of eu is itself), this integral is a good candidate for integration

by parts. Since we want to differentiate 2u, take w = 2u and dv = eudu. This gives

dw = 2du and v = eu, so integration by parts yields

∫

eu2udu = eu2u −
∫

2eudu = 2ueu − 2eu +C = 2(u − 1)eu +C

Plugging back our substitution u =
√

x, this gives us

∫

e
√

xdx = 2(
√

x − 1)e
√

x +C
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Problem 4 Find the following indefinite integrals

1.
∫

dx

(x + 1)
√

x

2.
∫

(ex + 1)dx

ex(ex + 2)

Solution:

1. Here the substitution is more subtle; however, one can recognize that
√

x and x

are both easily expressed in terms of the variable u =
√

x, and that the presence of
√

x

in the denominator makes this a good candidate for substitution. Since

du =
1

2
x−1/2dx =

1

2

1
√

x
dx

we can write

∫

dx

(x + 1)
√

x
=

∫

2

x + 1

1

2
x−1/2dx

=

∫

2

u2 + 1
du

Now, notice that the resulting integral is one that we recognize: the anti-derivative of

1
u2+1

is arctan(u), so we get

∫

dx

(x + 1)
√

x
=

∫

2

u2 + 1
du

= 2 arctan(u) +C

= 2 arctan(
√

x) +C

2. The simplest solution to this problem is to write

∫

ex + 1

ex(ex + 2)
dx =

∫

ex + 1

ex + 2
e−xdx

and then substitute u = e−x, with du = −e−xdx. This gives

∫

ex + 1

ex + 2
(e−xdx) =

∫

u−1 + 1

u−1 + 2
(−du)

= −
∫

1 + u

1 + 2u
du
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by multiplying the top and bottom of the integrand by u (since u = e−x > 0 for all x,

this is legal). Using long division we find that

1 + u =
1

2
(1 + 2u) +

1

2

so that

∫

ex + 1

ex + 2
(e−xdx) = −

∫

1 + u

1 + 2u
du

= −
∫













1
2
(1 + 2u)

1 + 2u
+

1
2

1 + 2u













du

= −
∫

1

2
du −

∫

1

2 + 4u
du

= −
1

2
u −

1

4
ln |2 + 4u| +C

using the substitution w = 2+4u, with du = 1
4
dw, in the rightmost integral (the absolute

value sign is actually irrelevant, since 2 + 4u = 2 + 4e−x > 0 is positive for all x). We

then substitute back u = e−x and get

∫

ex + 1

ex + 2
(e−xdx) = −1

2
e−x − 1

4
ln(2 + 4e−x) +C

Note: It is perhaps more natural, at first glance, to try to substitute u = ex instead

of e−x. This means that x = ln(u), so that dx = 1
u
du, and this substitution gives

∫

ex + 1

ex(ex + 2)
dx =

∫

u + 1

u(u + 2)
dx

=

∫

u + 1

u(u + 2)

1

u
du

=

∫

u + 1

u2(u + 2)
du

This integral could be computed using partial fractions, but since the denominator has

a double root (one of the factors is u2), we won’t go down this path.
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Problem 5 Find the following indefinite integrals

1.
∫

x2 + 1

x2 − 3x + 2
dx

2.
∫

x3 + 1

x2 − 4x + 3
dx

Solution: Both of these integrals require the method of partial fractions. Remem-

ber that this technique requires that the numerator have degree lower than the degree

of the denominator; this is not the case for either integral, so we must first use long

division to decompose the numerator appropriately.

1. The first step, as mentioned above, is to use long division to expand the nu-

merator. Since the highest (x2) term has the same coefficient in the numerator and

denominator, we know that

x2 + 1 = 1 · (x2 − 3x + 2) + (degree 1 polynomial)

Comparing terms shows that x2 + 1 − (x2 − 3x + 2) = 3x − 1, so that

x2 + 1 = (x2 − 3x + 2) + (3x − 1)

(it’s a good idea to check this to verify the arithmetic!)

Therefore we can write

x2 + 1

x2 − 3x + 2
=

(x2 − 3x + 2) + (3x − 1)

x2 − 3x + 2
= 1 +

3x − 1

x2 − 3x + 2

which tells us that

∫

x2 + 1

x2 − 3x + 2
dx =

∫

dx +

∫

3x − 1

x2 − 3x + 2
dx = x +

∫

3x − 1

x2 − 3x + 2
dx (3)

Now the problem is reduced to solving the integral on the right, in which the nu-

merator has degree 1— lower than the denominator’s 2— so partial fractions can be

applied. Write
3x − 1

x2 − 3x + 2
=

3x − 1

(x − 2)(x − 1)
=

A

x − 2
+

B

x − 1
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Putting the right hand side over common denominator x2 − 3x + 2 and comparing the

two numerators, we see that

3x − 1 = A(x − 1) + B(x − 2) = (A + B)x + (−A − 2B)

implying the system of equations

A + B = 3

−A − 2B = −1

The solution of this system is A = 5, B = −2. Therefore we have our partial fractions

decomposition
3x − 1

x2 − 3x + 2
=

5

x − 2
+
−2

x − 1

and the integral

∫

3x − 1

x2 − 3x + 2
dx =

∫ (

5

x − 2
+
−2

x − 1

)

dx = 5 ln |x − 2| − 2 ln |x − 1| +C

Plugging this into (3) finally yields

∫

x2 + 1

x2 − 3x + 2
dx = x + (5 ln |x − 2| − 2 ln |x − 1|) +C

2. Proceed as in part (1) above, but note that the numerator now has degree 3, so

there are two steps to the long division. First note that the leading term of the numerator

(x3) is x times the leading term of the denominator (x2), so that

x3 + 1 = x · (x2 − 4x + 3) + (degree 2 polynomial)

and we subtract x3 + 1 − x(x2 − 4x + 3) to find the degree 2 polynomial on the right

x3 + 1 = x · (x2 − 4x + 3) + 4x2 − 3x + 1

Now the remainder term on the right is still degree 2 (not degree lower than the denom-

inator yet), so we apply long division to 4x2 − 3x + 1 to obtain

4x2 − 3x + 1 = 4 · (x2 − 4x + 3) + 13x − 11

All together, we have the partial fraction decomposition

x3 + 1

x2 − 4x + 3
=

x(x2 − 4x + 3) + 4(x2 − 4x + 3) + 13x − 11

x2 − 4x + 3
= x + 4 +

13x − 11

x2 − 4x + 3
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so that

∫

x3 + 1

x2 − 4x + 3
dx =

∫ (

x + 4 +
13x − 11

x2 − 4x + 3

)

dx

=
x2

2
+ 4x +

∫

13x − 11

x2 − 4x + 3
dx (4)

Next, we apply partial fractions to the integral on the right. Write

13x − 11

x2 − 4x + 3
=

13x − 11

(x − 3)(x − 1)
=

A

x − 3
+

B

x − 1

Again, putting the right side over a common denominator x2 − 4x + 3 and comparing

numerators, we get

13x − 11 = A(x − 1) + B(x − 3) = (A + B)x + (−A − 3B)

and the system of equations

A + B = 13

−A − 3B = −11

which has solution A = 14, B = −1. Therefore

∫

13x − 11

x2 − 4x + 3
dx =

∫ (

14

x − 3
+
−1

x − 1

)

dx = 14 ln |x − 3| − ln |x − 1| +C

Plugging this into (4) gives the final answer

∫

x3 + 1

x2 − 4x + 3
dx =

x2

2
+ 4x + 14 ln |x − 3| − ln |x − 1| +C
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Problem 6 1. Use trapezoidal approximation with n = 4 intervals of subdivision

(each of equal length) to estimate the following integral

∫ π

0

sin2(x)dx.

Estimate the error of approximation.

2. Use Simpson’s rule with n = 4 to estimate
∫ 1

0
x5dx. Find the precise error of

approximation.

Solution:

1. The trapezoidal approximation is given by

Tn =
1

2n
( f (x0) + 2 f (x1) + 2 f (x2) + · · · + 2 f (xn−1) + f (xn))

In our case, n = 4, and therefore the interval [0, π] is divided into 4 equal subintervals,

with sample points x0 = 0, x1 = π/4, x2 = π/2, x3 = 3π/4, and x4 = π. We evaluate

f (x) = sin2(x) at each of these sample points, and get

T4 =
1

8
( f (0) + 2 f (π/4) + 2 f (π/2) + 2 f (3π/4) + f (π))

=
1

8
(sin2(0) + 2 sin2(π/4) + 2 sin2(π/2) + 2 sin2(3π/4) + sin2(π))

=
1

8















0 + 2

(

1
√

2

)2

+ 2(1)2 + 2

(

1
√

2

)2

+ 0















=
1

8

(

2 · 1

2
+ 2 + 2 · 1

2

)

=
1

8
(4) =

1

2

To estimate the error in this approximation, we need to estimate the second deriva-

tive f ′′(x) for all x in the interval [0, π]. First calculate (using the Chain Rule):

f (x) = sin2(x)

f ′(x) = 2 sin(x) cos(x) = sin(2x)

f ′′(x) = cos(2x) · 2 = 2 cos(2x)
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Since | cos(2x)| ≤ 1 for any x (in particular, any x in our interval [0, π]), we have

| f ′′(x)| = |2 cos(2x)| = 2| cos(2x)| ≤ 2

for all x in our interval [0, π], we can take K = 2 in the trapezoid error approximation

formula

|ET | ≤
K(b − a)3

12n2
=

2(π − 0)3

12 · 42
=
π3

96

2. The Simpson’s rule approximation is given by

S n =
1

3n
( f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + · · · + 2 f (xn−2) + 4 f (xn−1) + f (xn))

In our case, n = 4, and therefore the interval [0, 1] is divided into 4 equal subintervals,

with sample points x0 = 0, x1 = 1/4, x2 = 1/2, x3 = 3/4, and x4 = 1. We evaluate

f (x) = x5 at each of these sample points, and get

S 4 =
1

12
( f (0) + 4 f (1/4) + 2 f (1/2) + 4 f (3/4) + f (1))

=
1

12
((0)5 + 4(0.25)5 + 2(0.5)5 + 4(0.75)5 + (1)5)

=
1

12
(0 + .00390625 + .0625 + .94921875 + 1)

=
1

12
(2.015625) ≈ 0.168

To estimate the error in this approximation, we need to estimate the fourth deriva-

tive f (4)(x) for all x in the interval [0, 1]. It is straightforward to see that the fourth

derivative of f (x) = x5 is f (4)(x) = 5·4·3·2x = 120x. On the interval [0, 1] this function

is increasing and non-negative, and so achieves its maximum absolute value at the right

endpoint of interval— i.e. at x = 1— where it takes the value f (4)(1) = 120 · 1 = 120.

Therefore we have

| f (4)(x)| ≤ | f (4)(1)| = 120

for all x in our interval [0, 1], and we can take K = 120 in the Simpson’s rule error

approximation formula

|ES | ≤
K(b − a)5

180n4
=

120(1 − 0)5

180 · 44
=

120

180 · 256
≈ 0.003

The actual value of the integral is easy to compute:

∫ 1

0

x5dx =
x6

6

∣

∣

∣

∣

∣

∣

x=1

x=0

=
1

6
− 0 =

1

6
≈ 0.167
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Note that this differs by only 0.001 from our approximation; this error is within our

estimate of 0.003.
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Problem 7 1. Does the following integral converge? If yes, evaluate it:

∫ +∞

0

e−t cos2(t)dt

2. Does the following integral converge? If yes, evaluate it:

∫ +∞

1

dt

t(t + 1)

3. Does the following integral converge? If yes, evaluate it:

∫ ∞

1

dx

x[ln x]2

Solution:

1. The integrand is everywhere continuous, so the problem is Type I, and we only

have to worry about the convergence at the upper limit.

Notice that the integrand is non-negative, and since | cos(t)| ≤ 1, we have

0 ≤ e−t cos2(t) ≤ e−t

for all t. Therefore by comparison, since
∫ +∞

0
e−tdt converges, we know that our inte-

gral
∫ +∞

0
e−t cos2(t)dt also converges.

In order to compute what this integral converges to, it is best to first use the identity

cos2(t) =
1

2
+

1

2
cos(2t)

so that we have

∫ ∞

0

e−t cos2(t) =

∫ ∞

0

1

2
e−tdt +

∫ ∞

0

1

2
cos(2t)e−tdt

The first integral on the right hand side is relatively easy to evaluate:

1

2

∫ ∞

0

e−tdt =
1

2
lim

R→∞

∫ R

0

e−tdt

=
1

2
lim

R→∞

(

−e−t
)

∣

∣

∣

∣

t=R

t=0

=
1

2
lim

R→∞
(−e−R − (−e−0))

=
1

2

(

− lim
R→∞

e−R + e0
)

=
1

2
(−0 + 1) =

1

2
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The second integral requires an integration by parts; setting u = cos(2t) and dv =

e−tdt, we get du = −2 sin(2t)dt and v = −e−t, so integration by parts gives

∫

e−t cos(2t)dt = −e−t cos(2t)−
∫

(−e−t)(−2 sin(2t)dt) = −e−t cos(2t)−2

∫

e−t sin(2t)dt

Apply another integration by parts to the integral on the right with u = sin(2t) and

dv = e−tdt (so that du = 2 cos(2t)dt and v = −e−t) to get

∫

e−t cos(2t)dt = −e−t cos(2t) − 2

[

(−e−t)(sin(2t)) −
∫

(−e−t)(2 cos(2t)dt)

]

= −e−t cos(2t) + 2e−t sin(2t) − 4

∫

e−t cos(2t)dt

which, after some algebraic rearranging, gives

∫

e−t cos(2t)dt =
1

5

(

−e−t cos(2t) + 2e−t sin(2t)
)

+C

Therefore,

∫ ∞

0

1

2
cos(2t)e−tdt =

1

2
lim

R→∞

∫ R

0

cos(2t)e−tdt

=
1

2
lim

R→∞

1

5

(

−e−t cos(2t) + 2e−t sin(2t)
)

∣

∣

∣

∣

∣

t=R

t=0

=
1

10

(

lim
R→∞

(−e−R cos(2R) + 2e−R sin(2R)) − (−e0 cos(0) + 2e0 sin(0))

)

=
1

10
[(0) − (−1 · 1 + 2 · 1 · 0)] =

1

10
[1] =

1

10

Putting together the two pieces of the original integral yields

∫ ∞

0

e−t cos2(t) =
1

2
+

1

10
= 0.5 + 0.1 = 0.6

2. Once again the integrand is continuous on the interval of integration (it has

discontinuities at t = 0 and t = −1, but neither of these is in our interval of integration

[0,∞)) and non-negative, and we notice furthermore that

1

t(t + 1)
=

1

t2 + t
<

1

t2

for all 1 ≤ t < ∞. Therefore, since
∫ ∞

1

1
t2 dt converges, we know by comparison that

our integral
∫ ∞

1

1
t(t+1)

dt converges.
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In order to calculate this integral, we need to use a partial fractions decomposition.

The numerator 1 is already of lower degree than the denominator (t2 + t), which—

conveniently— is already factored. Therefore set

1

t(t + 1)
=

A

t
+

B

t + 1

and put the right hand side over the common denominator t(t + 1), and then compare

numerators of left and right hand sides to get

1 = A(t + 1) + Bt = (A + B)t + A

which yields the system of equations

A + B = 0

A = 1

with solution A = 1, B = −1. Therefore
∫

1

t(t + 1)
dt =

∫ (

1

t
−

1

t + 1

)

dt = ln |t| − ln |t + 1| +C = ln

∣

∣

∣

∣

∣

t

t + 1

∣

∣

∣

∣

∣

Returning to our problem, calculate
∫ +∞

1

dt

t(t + 1)
= lim

R→∞

∫ R

1

dt

t(t + 1)

= lim
R→∞

(

ln

∣

∣

∣

∣

∣

t

t + 1

∣

∣

∣

∣

∣

)

∣

∣

∣

∣

∣

t=R

t=1

= lim
R→∞

(

ln
R

R + 1
− ln

1

1 + 1

)

= ln

(

lim
R→∞

R

R + 1

)

− ln

(

1

2

)

= ln(1) − (− ln(2)) = 0 + ln(2) = ln(2)

3. It is not easy to test the convergence of this integral without calculating the limit

directly, so let’s attack the integral itself. The integrand is continuous at all points in

the interval [1,∞) except for x = 1, where ln2(1) = 0 and the denominator goes to zero.

Therefore, if (and only if) the integral converges, it is defined by the limit
∫ ∞

1

dx

x ln2(x)
=

∫ 2

1

dx

x ln2(x)
+

∫ ∞

2

dx

x ln2(x)

= lim
R→1

∫ 2

R

dx

x ln2(x)
+ lim

R→∞

∫ ∞

2

dx

x ln2(x)
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In either case, we can integrate 1

x ln2(x)
by the substitution u = ln(x), with du = 1

x
dx,

giving

∫

dx

x ln2(x)
=

∫

1

ln2(x)

1

x
dx

=

∫

u−2du

= −u−1 +C

= −(ln(x))−1 +C

Let’s first check if the integral converges near x = 1. Recall we have

∫ 2

1

dx

x ln2(x)
= lim

R→1

∫ 2

R

dx

x ln2(x)

= lim
R→1

[(− ln(2))−1 − (− ln(R))−1)]

= (− ln(2))−1 + lim
R→1

(ln(R))−1

Now as R → 1, we have ln(R) → 0, and so (ln(R))−1 → ∞ does not converge as

R → 1. Therefore, the integral
∫ 2

1

dx

x ln2(x)
does not converge. This means that the full

integral
∫ ∞

1

dx

x ln2(x)
does not converge— regardless of whether the second part

∫ ∞
2

dx

x ln2(x)

converges (which it does)!

So, the answer is NO, the integral does not converge.
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Problem 8 1. Find the volumes of the bodies obtained from the region enclosed by

y = sin(x), 0 ≤ x ≤ π

and y = 0 by revolving about a) the x-axis, b) the line x = −2

2. Find the volumes of the bodies obtained from the region enclosed by

y =
1

x5
, 1 ≤ x < ∞,

y = 0, x = 1 by revolving about a) the line y = −2, b) the y-axis.

Solution:

1. First step: DRAW A PICTURE!! (see accompanying diagrams)

Since y = sin(x) is not a pleasant function to invert, it’s a good idea to integrate over

x using vertical strips (notice, for example, that horizontal strips go from one arcsin(y)

to another arcsin(y)... not something that we want to start having to compute).

(a) Each value of x between 0 and π gives a vertical strip, of thickness dx, that

generates a disk when rotated about the x-axis. Thus we use the formula for volume of

rotation via the disk method,

V =

∫ π

0

πR2dx

In our case, the radius of the disk is given by the distance from (x, sin x) to (x, 0) for

each x, and is therefore given by R = sin x. Hence

V =

∫ π

0

π(sin x)2dx

We can compute this integral by applying the identity sin2(x) = 1
2
(1 − cos(2x)) (see

Problem 1, part (2)):

V = π

∫ π

0

sin2(x)dx = π

(

x

2
− sin(2x)

4

)
∣

∣

∣

∣

∣

∣

x=π

x=0

= π

(

π

2
−

sin(2π)

4
−

0

2
+

sin(0)

4

)

= π

(

π

2
− 0 − 0 + 0

)

=
π2

2
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(b) Since we are now rotating about the (vertical) line x = −2, our vertical strips

no longer generate disks, but instead generate cylindrical shells. The formula for the

volume of rotation via the cylindrical shell method is

V =

∫ π

0

2π · R · hdx

Here R is the radius of rotation, given by the distance from x to the line of rotation at

−2; this distance is R = x + 2. The height h is the height of the vertical strip, equal to

sin x as before in part (a). Thus

V =

∫ π

0

2π(x + 2) sin(x)dx

= 2π

∫ π

0

x sin(x)dx + 2π

∫ π

0

2 sin(x)dx

= 2π

∫ π

0

x sin(x)dx − 4π cos(x)|x=πx=0

= 2π

∫ π

0

x sin(x)dx − (4π · (−1) − 4π · (1))

= 2π

∫ π

0

x sin(x)dx + 8π

The integral
∫ π

0
x sin(x)dx can be evaluated by an integration by parts, setting u = x

and dv = sin(x)dx, whereby du = dx and v = − cos(x). This gives

∫ π

0

x sin(x)dx = −x cos(x)|x=πx=0 −
∫ π

0

(− cos(x))dx

= −π cos(π) − 0 +

∫ π

0

cos(x)dx

= −π · (−1) + sin(x)|x=πx=0

= π + (0 − 0) = π

Putting all this together, we have

V = 2π

∫ π

0

x sin(x)dx + 8π = 2π(π) + 8π = 2π2 + 8π

2. As in part (1), we will use the disk/washer method for part (a) and the cylindrical

shell method for part (b); although the function y = x−5 is more easily inverted than the

function in part (a), and we could exchange disk/washer and cylindrical shell methods

by considering x = y−1/5, it seems easier to integrate over x since we are given the

information about the region in terms of y as a function of x.
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(a) We have as above vertical strips stretching from (x, x−5) to (x, 0) for each x in

[0,∞). However, unlike part (a), the axis of rotation is now y = −2, not the x-axis;

therefore the region under consideration does NOT border the axis of rotation, and we

have to use the washer method

V =

∫ ∞

1

(πR2 − πr2)dx

Here R is the outer radius of rotation, given by the distance of the graph of the function

y = x−5 from the line y = −2; so R = x−5 + 2. The inner radius r is the distance from

the inner curve y = 0 to the line y = −2, which is r = 2 for all x. Therefore

V = π

∫ ∞

1

((x−5 + 2)2 − 22)dx

= π

∫ ∞

1

(x−10 + 2x−5 + 4 − 4)dx

= π

∫ ∞

1

(x−10 + 2x−5)dx

= π

(

x−9

−9
+ 2

x−4

−4

)
∣

∣

∣

∣

∣

∣

x=∞

x=1

= π(0 + 0 − (−1/9 − 1/4)) = π(1/9 + 1/4) =
13π

36

(b) Once again we use the cylindrical shells formula

V =

∫ ∞

1

2π · R · hdx

where R is the radius of rotation, given by the distance from x to the y-axis; therefore

R = x. The height is given by the height of the vertical strip which, as in part (a), is

given by h = x−5.

Thus

V = 2π

∫ ∞

1

x · x−5dx = 2π

∫ ∞

1

x−4dx

= 2π

(

x−3

−3

∣

∣

∣

∣

∣

∣

x=∞

x=1

)

= 2π

(

0 −
1

−3

)

=
2π

3
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Problem 9 Find the length of the curve given by the graph of the function

y = ln(cos(x))

between points (0, 0) and (a, ln(cos(a))), 0 < a < π
2
.

Solution: Observe that the starting point (0, 0) of the curve corresponds to x = 0

(and y = ln(cos(0)) = ln(1) = 0), and the terminal point (a, ln(cos(a))) corresponds to

x = a. Since the curve is parametrized by x, we have the arc length formula

L =

∫ x=a

x=0

√

1 +

(

dy

dx

)2

dx

So the next step is to differentiate

dy

dx
=

d

dx
(ln(cos(x))

=
1

cos(x)
·

d

dx
(cos(x))

=
1

cos(x)
· (− sin(x))

=
− sin(x)

cos(x)
= − tan(x)

using the Chain Rule.

Plugging this into the arc length formula, and recalling that

1 + tan2(x) =
cos2(x)

cos2(x)
+

sin2(x)

cos2(x)
=

1

cos2(x)
= sec2(x)

we get that the arc length is

L =

∫ a

0

√

1 + (− tan(x))2dx

=

∫ a

0

√

1 + tan2(x)dx

=

∫ a

0

√

sec2(x)dx

=

∫ a

0

| sec(x)|dx

=

∫ a

0

sec(x)dx
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since 0 ≤ x ≤ a < π/2 implies that sec(x) ≥ 0 on this interval.

Therefore

L =

∫ a

0

sec(x)dx

= (ln | sec(x) + tan(x)|)
∣

∣

∣

∣

∣

x=a

x=0

= ln(sec(a) + tan(a)) − ln(sec(0) + tan(0))

= ln(sec(a) + tan(a)) − ln(1 + 0) = ln(sec(a) + tan(a)) − ln(1)

= ln(sec(a) + tan(a))
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Problem 10 1. A cable that weights 2lb/ft is used to lift 800lb of coal from a mi-

neshaft 500 ft deep. Find the work done.

2. A 10 ft chain weights 25 lb and hangs from the ceiling. Find the work done in

lifting the middle of the chain to the ceiling so that it is level with the upper end.

Solution:

1. There are two parts to the work done: the work done in lifting the coal out of the

mine, and the work done in lifting the chain itself out of the mine.

For the first part, the problem states that 800 lbs. of coal are lifted 500 ft., and so

the total work done to lift the coal up out of the mine is

W1 = (800 lbs. ) · (500 ft. ) = 400, 000 ft.-lbs.

For the second part, we have to do an integral. Let x be the depth at which each

piece of the chain is located— this means 0 ≤ x ≤ 500. Each piece of chain of length

dx has weight (2 lb/ft. )(dx ft. ) = 2dx lbs., and is lifted a distance x to the top of the

mine. Therefore the work done in lifting the chain out of the mine is given by the

integral

W2 =

∫ 500

0

2dx · x =
∫ 500

0

2xdx = x2|x=500
x=0 = 250, 000 ft.-lbs.

So the total work done is

W1 +W2 = 400, 000 ft.-lbs. + 250, 000 ft.-lbs. = 650, 000 ft.-lbs.

2. Here again, there are multiple parts to the work done. If the middle of the chain

is lifted to be even with the top, then the top 1/4 of the chain— the first 2.5 ft.— is not

moved at all. On the other hand, the bottom half (5 ft.) of the chain is lifted a total

distance of 5 ft.; or, more precisely, each piece of the bottom half of the chain is lifted

to a point 5 ft. above its original position. Therefore, since the bottom half of the chain

weighs 1
2
· 25 lbs. = 12.5 lbs. , the work done in moving the bottom half of the chain

5 ft. upward is

W1 = (12.5 lbs. ) · (5 ft. ) = 62.5 ft.-lbs.
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It remains to examine the second 1
4

of the chain. Here, each piece of the chain is

lifted a distance equal to twice its original distance from the point P located 1
4

of the

way down the chain (eg., the point P does not move at all, but the midpoint of the chain

starts 2.5 ft. below P, and ends up 2.5 ft. above P, which is 2 · 2.5 ft. = 5 ft. above

its original position). Therefore, if we set x to be the starting distance below P, then

we let x range over 0 ≤ x ≤ 2.5 ft., and each piece of thickness dx is moved upward a

distance 2x. The weight density of the chain is given by

25 lbs.

10 ft.
= 2.5 lbs./ft.

This means that a piece of chain of length dx will have weight 2.5dx lbs., and since it

is moved a distance 2x, the work done is given by the integral

W2 =

∫ 2.5

0

(2.5dx)(2x) =

∫ 2.5

0

5xdx

= 2.5x2|x=2.5
x=0 = 2.5 · (2.5)2 − 0

= 15.625 ft.-lbs.

Putting the two parts of the work together, the total work done is

W1 +W2 = 62.5 ft.-lbs. + 15.625 ft.-lbs. = 78.125 ft.-lbs.
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Problem 11 A granary has the shape of a half cylinder lying on its rectangular side

(the cut). The cylinder’s height is 10m, and the radius of the base is 2m. If the granary

is full of barley, with density 600kg/m3, how much work is done in removing all the

grain via an opening at the top of the granary?

Solution: Step 1— DRAW A PICTURE!! (see accompanying diagrams).

We divide the granary into horizontal slices, each at a height z above the base of

the granary (so that z runs from 0 to 2m). For each z, the slice at height z is a rectangle

of length 10m (the “height” of the sideways cylinder), and thickness dz, whose width

stretches from one side of the semi-circular cross-section to the opposite side. A simple

application of the Pythagorean Theorem shows that this width is 2
√

4 − z2. Thus the

volume of the slice at height z is given by

dV = (10 m)(2
√

4 − z2 m)(dz m) = 20
√

4 − z2dz m3

Since the density of the barley is 600 kg/m3, the mass of barley in this slice is

dm = (600 kg/m3)(dV) = 600 · 20
√

4 − z2dz kg = 12, 000
√

4 − z2dz kg

From the law F = mg = m · 9.8, we have a force

dF = dm · 9.8 = (9.8)(12, 000
√

4 − z2dz) = 117, 600
√

4 − z2dz N

acting on the slice at height z.

Next, observe that the slice at height z is moved a distance 2 − z upward to get out

the top of the granary. Therefore,

W =

∫ 2

0

(117, 600
√

4 − z2dz) · (2 − z) = 117, 600

∫ 2

0

(2 − z)
√

4 − z2dz

This integral can be split into two parts. The first part is

W1 = 117, 600

∫ 2

0

2
√

4 − z2dz

= 235, 200

∫ 2

0

√

22 − z2dz
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Observe that this integral is a candidate for the trigonometric substitution z = 2 sin(u),

with dz = 2 cos(u)du, so that

∫ z=2

z=0

√

22 − z2dx =

∫ u=π/2

u=0

√

22 − 22 sin2(u)(2 cos(u)du) =

∫ π/2

0

4 cos2(u)du

since
√

22(1 − sin2(u)) = 2
√

cos2(u) = cos(u)

for 0 ≤ u ≤ π/2, since cos(u) ≥ 0 on this interval.

Therefore, using the identity cos2(u) = 1
2
+ 1

2
cos(2u), this work becomes

W1 = 235, 200

∫ u=π/2

u=0

4 cos2(u)du

= 235, 200 · 4
[∫ π/2

0

(

1

2
+

1

2
cos(2u)

)

du

]

= 235, 200 · 4
(

u

2
+

sin(2u)

4

)
∣

∣

∣

∣

∣

∣

π/2

0

= 235, 200 · 4
(

π/2

2
+

sin(π)

4
−

0

2
−

sin(0)

4

)

= 235, 200 · 4 · π
4
= 235, 200π

The second part can be computed via the substitution u = 4 − z2, with du = −2zdz:

W2 = 117, 600

∫ z=2

z=0

(−z)
√

4 − z2dz

= 58, 800

∫ z=2

z=0

√

4 − z2(−2zdz)

= 58, 800

∫ u=0

u=4

√
udu

= 58, 800
u3/2

3/2

∣

∣

∣

∣

∣

∣

u=0

u=4

= 58, 800

(

0 −
2

3
43/2

)

= −58, 800 ·
2

3
· 8 = −313, 600

Thus the total work done is

W1 +W2 = 235, 200π − 313, 600
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Problem 12 If f (x) is an increasing function on [0, 1], rank the following in order from

least to greatest:

• f(0)

• f(1)

• The left endpoint approximation to
∫ 1

0
f (x)dx with n = 5 rectangles.

• The right endpoint approximation to
∫ 1

0
f (x)dx with n = 5 rectangles.

• The average value of f on [0, 1].

Solution: The first step is to reinterpret some of the quantities listed here. Notice

that, since the interval of integration has length 1, the average value of f on [0, 1] is

given by

favg =
1

1 − 0

∫ 1

0

f (t)dt =

∫ 1

0

f (t)dt

We know that, whenever f is an increasing function, the left endpoint of an interval

gives a value lower than the other values in the interval, and the right endpoint gives a

value greater than the other values in the interval; thus the left endpoint approximation

will be an underestimate for the integral, and the right endpoint will be an overestimate.

Therefore, we have

left endpoint approximation < average value of f < right endpoint approximation

It remains to see where f (0) and f (1) fit in to the heirarchy. Notice that the left

endpoint approximation is given by

L5 =
1

5
( f (0) + f (1) + f (2) + f (3) + f (4))

which is the average of the values f (0), f (1), f (2), f (3), and f (4). Since each of these

is at least as big as f (0), and the latter 4 are greater than f (0) (since f is increasing),

this left endpoint approximation is greater than f (0). Similarly, the right endpoint

approximation is the average of f (1), f (2), f (3), f (4), and f (5)— all of which are no
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greater than f (1), and the first 4 of which are strictly less than f (1). Thus the right

endpoint approximation is less than f (1).

Summarizing, we have the following order from least to greatest:

• f(0)

• The left endpoint approximation to
∫ 1

0
f (x)dx with n = 5 rectangles.

• The average value of f on [0, 1].

• The right endpoint approximation to
∫ 1

0
f (x)dx with n = 5 rectangles.

• f(1)

It may be useful to interpret these quantities as given by the areas of rectangles

over the x-axis (see attached figure). The value f (0) is equal to the area of a rectangle

streching from 0 to 1 of height f (0), which lies entirely underneath all points on the

graph of f from 0 to 1. The left endpoint approximation consists of rectangles each

lying underneath the graph in each respective subinterval, though all but the leftmost

stretch above f (0). Similarly on the other extreme, the right endpoint approximation is

given by the areas of rectangles, each stretching above the graph in each subinterval,

though all but the rightmost lie underneath the value f (1). The value f (1) corresponds

to a rectangle of length 1 and height f (1), which is entirely above all points in the graph

of f (and rectangles of the right endpoint approximation).
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Problem 13 For each of the following, determine if the improper integral converges

or diverges. If it converges, evaluate the integral.

1.
∫ ∞
−∞ 2xe−x2

dx

2.
∫ ∞
−∞

1
2x

e−x2

dx

Solution:

1. First, observe that the integrand is everywhere continuous, so we do not have to

worry about any “Type II” convergence issues; the only thing to check is whether or

not the integral converges out to ±∞. For this, split the integral into two parts, one for

each (infinite) limiting endpoint:

∫ ∞

−∞
2xe−x2

dx =

∫ 0

−∞
2xe−x2

dx +

∫ ∞

0

2xe−x2

dx

= lim
R→∞

∫ 0

−R

2xe−x2

dx + lim
R→∞

∫ R

0

2xe−x2

dx

if both of these limits exist.

Next, notice that we can compute these (finite) integrals with the substitution u =

−x2, since this gives du = −2xdx, and we have

∫

2xe−x2

dx = −
∫

e−x2

(−2xdx)

= −
∫

eudu = −eu +C

= −e−x2

+C

Therefore we have

lim
R→∞

∫ 0

−R

2xe−x2

dx = lim
R→∞
−e−x2

∣

∣

∣

∣

x=0

x=−R

= lim
R→∞

(

−e−02

+ e−(−R)2
)

= −e0 + lim
R→∞
−e−R2

= −1 + 0 = −1
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Similarly,

lim
R→∞

∫ R

0

2xe−x2

dx = lim
R→∞
−e−x2

∣

∣

∣

∣

x=R

x=0

= lim
R→∞
−e−R2

+ e−02

= 0 + 1 = 1

This means that both halves converge, and so our original integral from −∞ to ∞

converges, and its value is equal to

∫ ∞

−∞
2xe−x2

dx = lim
R→∞

∫ 0

−R

2xe−x2

dx + lim
R→∞

∫ R

0

2xe−x2

dx = −1 + 1 = 0

Thus the integral converges to 0.

2. Here there are two issues to worry about: not only is the interval of integration

infinite, but the integrand is also discontinuous at 0, so we have both “Type I” and

“Type II” convergence issues. Break up the integral into 4 pieces, one for each potential

convergence problem:

∫ ∞

−∞

1

2x
e−x2

dx =

∫ −1

−∞

1

2x
e−x2

dx +

∫ 0

−1

1

2x
e−x2

dx +

∫ 1

0

1

2x
e−x2

dx +

∫ ∞

1

1

2x
e−x2

dx

This integral is not easily evaluated; however, let’s try to see if we can determine

whether or not it converges. Near ±∞, the factor e−x2

is very very small, and multiply-

ing it by 1
2x

only makes it smaller— this suggests that the first and last pieces should

converge (a rigorous argument would use the Comparison Test, eg. comparing with

the function ex and e−x, for x negative and x positive, respectively). On the other hand,

near 0, the factor e−x2

is close to a constant, while 1
2x

gets very large, and the whole

integral behaves like
∫

constant
x

dx, which we know diverges.

So let’s apply the Comparison Test to show that the integral from 0 to 1 diverges.

For 0 ≤ x ≤ 1, the function e−x2

satisfies

e−x2 ≥ e−1 ≥ 1

3

Therefore
∫ 1

0

1

2x
e−x2

dx ≥
∫ 1

0

1

2x
·

1

3
dx =

1

6

∫ 1

0

dx

x
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But we know that this last integral diverges, since

lim
R→0

∫ 1

R

dx

x
= lim

R→0
ln(x)|x=1

x=R

= ln(1) − lim
R→0

ln(R) = − lim
R→0

ln(R)

and ln(R)→ −∞ (as R→ 0) does not converge.

Therefore, our original integral
∫ ∞
−∞

1
2x

e−x2

dx diverges.
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Problem 14 A particle starts at the origin at time t = 0, and traces out a path given by

x(t) = t

y(t) = 2t2

for each t ≥ 0.

1. Express the length l(T ) of the path traced out by the particle from t = 0 to a time

t = T as an integral, but do not evaluate it.

2. Find l′(T ). (Side note: this is the speed of the particle at time T .)

3. Evaluate l′(2).

Solution:

1. Since we are given the parametrization of the curve, this is simply given by the

arc length formula

l(T ) =

∫ t=T

t=0

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

So the next step is to evaluate the derivatives:

dx

dt
=

d

dt
(t) = 1

dy

dt
=

d

dt
(2t2) = 4t

Therefore

l(T ) =

∫ t=T

t=0

√

1 + (4t)2dt = l(T ) =

∫ t=T

t=0

√
1 + 16t2dt

2. Since l(T ) is defined as the integral of f (t) =
√

1 + 16t2 from 0 to T , the Funda-

mental Theorem of Calculus implies that

l′(T ) = f (T ) =
√

1 + 16T 2

3. Since part (2) gave us the function l′(T ) =
√

1 + 16T 2, we simply evaluate this

function at the point T = 2, giving

l′(2) =
√

1 + 16(2)2 =
√

1 + 16 · 4 =
√
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