
MAT 126 Calculus B Spring 2006
Practice Final Exam — Solutions

Answer each question in the space provided and on the reverse side of
the sheets. Show your work whenever possible. Unless otherwise indi-
cated, answers without justification will get little or no partial
credit! Cross out anything that grader should ignore and circle or
box the final answer. You do not need to simplify numerical answers
or write their approximate values. This practice exam contains more
problems then the actual test to give you more practice.

1. Evaluate the following definite integrals:
(a) ∫ 9

1

ln
√

x dx∫ 9

1

ln
√

x dx =
1

2

∫ 9

1

ln x dx =
1

2
(x ln x− x)|91

=
1

2
(9 ln 9− 9− (ln 1− 1)) = 9 ln 3− 4,

where we have used that the antiderivative of ln x is x ln x−
x (see Section 5.6, Example 2).

(b) ∫ 2

0

x

1 + 2x2
dx

Using the substitution u = 1 + 2x2 we get du = 4xdx, so

that xdx =
1

4
du, and the limits of integration x = 0 and

x = 2 correspond to u = 1 and u = 9. We get∫ 2

0

x

1 + 2x2
dx =

1

4

∫ 9

1

du

u

=
1

4
ln u|91 =

1

2
ln 3.

(c) ∫ e

1

(ln x)3

x
dx

The substitution u = ln x gives du =
dx

x
and limits of in-

tegration x = 1 and x = e correspond to u = 0 and u = 1.
We have∫ e

1

(ln x)3

x
dx =

∫ 1

0

u3du =
1

4
u4
∣∣1
0

=
1

4
.

1



2

(d) ∫ 1

−1

x2 sin(x5) dx

The function f(x) = x2 sin(x5) is odd, f(−x) = −f(x),
so using the property of symmetric functions (see Section
5.5), we get ∫ 1

−1

x2 sin(x5) dx = 0.

(e) ∫ 1/2

0

sin−1 x√
1− x2

dx

Using the substitution u = sin−1 x, we get du =
dx√

1− x2
,

and the limits of integration x = 0 and x = 1/2 correspond
to u = 0 and u = π/6. We get∫ 1/2

0

sin−1 x√
1− x2

dx =

∫ π/6

0

u du =
1

2
u2
∣∣π/6

0
=

π2

72
.

(f) ∫ 4

1

√
t ln t dt

Here we use integration by parts with u = ln t and dv =
√

t.
We have du = dt

t
and v = 2

3
t3/2, so that∫ 4

1

√
t ln t dt =

∫ 4

1

u dv = uv|41 −
∫ 4

1

vdu

=
2

3
(16 ln 2)− 2

3

∫ 4

1

√
t dt

=
32

3
ln 2− 4

9
t3/2
∣∣4
1

=
32

3
ln 2− 28

9
.

(g) ∫ 13

0

dx
3
√

(1 + 2x)2

We use the substitution u = 1 + 2x, so that du = 2dx and
the limits of integration x = 0 and x = 13 correspond to
u = 1 and u = 27. We get∫ 13

0

dx
3
√

(1 + 2x)2
=

1

2

∫ 27

1

u−
2
3 du =

1

2
3u

1
3

∣∣∣27
1

= 3.
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(h) ∫ π
2

0

sin3 x dx

This is a trigonometric integral. Writing

sin3 x = sin2 x sin x = (1− cos2 x) sin x,

we recognize the substitution u = cos x. We have du =
− sin xdx, and the limits of integration x = 0 and x = π

2
correspond to u = 1 and u = 0. We get∫ π

2

0

sin3 x dx = −
∫ 0

1

(1− u2)du =

∫ 1

0

(1− u2)du =

(
u− u3

3

)∣∣∣∣1
0

=
2

3
.

2. Evaluate the following indefinite integrals:
(a) ∫

x2ex dx

This is Example 3 in Section 5.6.
(b) ∫

2x3 + 1

x2 + 1
dx

Doing long division, or simplifying as follows:

2x3 + 1

x2 + 1
=

(2x3 + 2x) + 1− 2x

x2 + 1
= 2x +

1− 2x

x2 + 1
,

we get∫
2x3 + 1

x2 + 1
dx =

∫ (
2x +

1− 2x

x2 + 1

)
dx

= x2 +

∫
1

x2 + 1
dx− 2

∫
x

x2 + 1
dx

= x2 + tan−1 x− ln(x2 + 1) + C,

where in the last integral we have used the substitution
u = x2 + 1.

(c) ∫
tan−1 x

1 + x2
dx

Using the substitution u = tan−1 x, we get du =
dx

1 + x2
, so

that∫
tan−1 x

1 + x2
dx =

∫
u du =

1

2
u2 + C =

1

2
(tan−1 x)2 + C.
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(d) ∫
sin−1 x dx

Using integration by parts with u = sin−1 x and dv = dx
we get

du =
dx√

1− x2
and v = x,

so that∫
sin−1 x dx =

∫
u dv = uv −

∫
v du

= x sin−1 x−
∫

x√
1− x2

dx.

To compute the last integral, use the substitution u = 1−
x2, so that du = −2xdx and∫
x√

1− x2
dx = −1

2

∫
du√

u
= −

√
u + C = −

√
1− x2 + C.

Thus, finally,∫
sin−1 x dx = x sin−1 x +

√
1− x2 + C.

(e) ∫
x− 1

x2 + 3x + 2
dx

Using partial fractions,

x− 1

x2 + 3x + 2
=

x− 1

(x + 1)(x + 2)
=

A

x + 1
+

B

x + 2
,

where A and B are such that

x− 1 = A(x + 2) + B(x + 1)

holds for all x. Setting x = −1, we get A = −2, and setting
x = −2, we get B = 3. Thus∫

x− 1

x2 + 3x + 2
dx =

∫ (
− 2

x + 1
+

3

x + 2

)
dx

= − log(x + 1)2 + log |x + 2|3 + C.

(f) ∫
t2 cos(1− t3) dt
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Using the substitution u = 1− t3 we get du = −3t2dt and∫
t2 cos(1−t3) dt = −1

3

∫
cos u du = −1

3
sin u+C = −1

3
sin(1−t3)+C.

(g) ∫
ex 3
√

1 + ex dx

Using the substitution u = 1 + ex we get du = exdx and∫
ex 3
√

1 + ex dx =

∫
u

1
3 du =

3

4
u

4
3 + C =

3

4
(1 + ex)

4
3 + C.

(h) ∫
cos5 x dx

This is a trigonometric integral. Writing

cos5 x = cos4 cos x = (1− sin2 x)2 cos x,

we recognize the substitution u = sin x. We have du =
cos xdx and∫

cos5 x dx =

∫
(1− sin2 x)2 cos x dx =

∫
(1− u2)2 du =

∫
(1− 2u2 + u4)du

= u− 2

3
u3 +

1

5
u5 + C = sin x− 2

3
sin3 x +

1

5
sin5 x + C.

3. (a) Write a formula for cos2 x in terms of sin2 x.

cos2 x = 1− sin2 x.

(b) Evaluate ∫
cos3 x sin2 x dx

∫
cos3 x sin2 x dx =

∫
(1− sin2 x) sin2 x cos x dx,

and using the substitution u = sin x, we get du = cos x dx
and∫
cos3 x sin2 x dx =

∫
u2(1− u2)du =

∫
(u2 − u4)du

=
u3

3
− u5

5
+ C

=
sin3 x

3
− sin5 x

5
+ C.
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4. Let

f(x) =

∫ √
x

2

sin t

t
dt + x2

(a) Find f ′(x).
Using the chain rule with u =

√
x and the Fundamental

Theorem of Calculus, we get

df

dx
(x) =

d

du

(∫ u

2

sin t

t
dt

)
du

dx

∣∣∣∣
u=
√

x

+ 2x

=
sin

√
x√

x
· 1

2
√

x
+ 2x =

sin
√

x

2x
+ 2x.

(b) Evaluate f(4).

f(4) =

∫ √
4

2

sin t

t
dt + 42 =

∫ 2

2

sin t

t
dt + 16 = 16.

5. Find a function f and a number a such that for x,

1 +

∫ x

a

tf(t) dt = x3

Setting in the equation x = a, we get 1 = a3, so that a = 1.
Differentiating both sides of the equation with respect to x and
using the Fundamental Theorem of Calculus, we get

xf(x) = 3x2,

so that f(x) = 3x.
6. (a) Let

I =

∫ 4

0

ex2

dx

For any value of n list the numbers Ln, Rn, Mn, Tn and I
in increasing order.
The function f(x) = ex2

is increasing and concave upward
on the real line (check it using the second derivative test).
From the graph (sketch it!) we get

Ln < Mn < I < Tn < Rn.

(Here we used the analog of Fig. 5 on p. 419 (sketch it!)
to get the relation Mn < I < Tn).

(b) Repeat part (a) for

I =

∫ √
2/2

0

e−x2

dx
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The function f(x) = e−x2
is decreasing and concave down-

ward when 0 ≤ x ≤
√

2/2 (check it using the second deriv-
ative test) . From the graph and analog of Fig. 5 (sketch
them!) we get

Rn < Tn < I < Mn < Ln.

7. Determine whether each integral is convergent or divergent.
Evaluate those that are convergent.
(a) ∫ ∞

0

e−x dx

The integral
∫ t

0
e−x dx exists for every number t ≥ 0 and

lim
t→∞

∫ t

0

e−x dx = lim
t→∞

(−e−x)
∣∣t
0

= lim
t→∞

(1− e−t) = 1.

The improper integral of Type 1 is convergent and∫ ∞

0

e−x dx = 1.

(b) ∫ 1

0

1√
x

dx

The integral
∫ 1

t
1√
x
dx exists for every number t > 0 and

lim
t→0

∫ 1

t

1√
x

dx = lim
t→0

(2
√

x)
∣∣1
t

= 2 lim
t→0

(1−
√

t) = 2.

The improper integral of Type 2 is convergent and∫ 1

0

1√
x

dx = 2.

(c) ∫ 3

0

1

x
√

x
dx
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The integral
∫ 3

t
1

x
√

x
dx exists for every number t > 0 and

lim
t→0

∫ 3

t

1

x
√

x
dx = lim

t→0
(−2x−1/2)

∣∣3
t

= − 2√
3

+ 2 lim
t→0

1√
t
.

The last limit is ∞ — does not exist as a finite number, so
that improper integral of Type 2 is divergent.

(d) ∫ ∞

−∞
xe−x2

dx

Since∫ ∞

−∞
xe−x2

dx =

∫ 0

−∞
xe−x2

dx +

∫ ∞

0

xe−x2

dx,

we must evaluate both integrals separately. Using the sub-
stitution u = x2 (one could also use u = −x2), we get
du = 2xdx and∫ ∞

0

xe−x2

dx = lim
t→∞

∫ t

0

xe−x2

dx =
1

2
lim
t→∞

∫ t2

0

e−udu

=
1

2
lim
t→∞

(−e−u)
∣∣t2
0

=
1

2
lim
t→∞

(1− e−t2) =
1

2
.

Using this result and the fact that xe−x2
is an odd function

we get∫ 0

−∞
xe−x2

dx = lim
t→−∞

∫ 0

t

xe−x2

dx

= − lim
−t→∞

∫ −t

0

xe−x2

dx = −1

2
.

Thus the improper integral of Type 1 is convergent and∫ ∞

−∞
xe−x2

dx =
1

2
+

(
−1

2

)
= 0.

(e) ∫ 1

0

1

4y − 1
dy



9

The integrand is f(y) = 1
4y−1

, and it is discontinuous (blows

up) at y = 1
4
. Thus∫ 1

0

1

4y − 1
dy =

∫ 1
4

0

1

4y − 1
dy +

∫ 1

1
4

1

4y − 1
dy,

and we need to investigate both improper integrals of Type
2. For the first integral we have, using the substitution
u = 4y − 1, du = 4dy,∫ 1

4

0

1

4y − 1
dy = lim

t→ 1
4

∫ t

0

1

4y − 1
dy =

1

4
lim
t→ 1

4

∫ 4t−1

−1

1

u
du

1

4
lim
t→ 1

4

ln |u||4t−1
−1 =

1

4
lim
t→ 1

4

(ln |4t− 1| − ln | − 1|)

=
1

4
lim
t→ 1

4

ln |4t− 1| = −∞,

since ln 0 = −∞. Thus the first improper integral is diver-
gent, so that the integral in question is also divergent.

8. Find the area of the region bounded by the curves:
(a) y = x2 and y = x4.

The curves intersect at the points x = −1, 0, 1 and the top
and bottom boundaries of the enclosed region are y = x2

and y = x4 (sketch the graph!). We have

A =

∫ 1

−1

(x2 − x4)dx = 2

∫ 1

0

(x2 − x4)dx

= 2

(
x3

3
− x5

5

)∣∣∣∣1
0

=
4

15
.

(b) x + y2 = 2 and x + y = 0.
The curves intersect at the points with coordinates (−2, 2)
and (1,−1), and the top and bott om boundaries of the
enclosed region are x = 2 − y2 and x = −y, where we are
using y as an independent variable (sketch the graph!). We
have

A =

∫ 2

−1

(2− y2 − (−y))dy =

∫ 2

−1

(2− y2 + y)dy

=

(
2y − y3

3
+

y2

2

)∣∣∣∣2
−1

= 4
1

2
.
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9. (a) Find the volume of the solid of revolution obtained by ro-
tating the region bounded by the curves y = x2 and y2 = x
about the x-axis.
The curves y = x2 and y =

√
x (we solved the second

equation for y, which is assumed to be positive) intersect
at x = 0 and x = 1. The region has the curve y =

√
x

as the top boundary and the curve y = x2 as the bottom
boundary (sketch the graph!). A cross-section is a washer
with the inner radius x2 and the outer radius

√
x. The

cross-sectional area is A(x) = π(x − x4), and the volume
of the solid of revolution is

V =

∫ 1

0

A(x)dx = π

∫ 1

0

(x− x4)dx

= π

(
x2

2
− x5

5

)∣∣∣∣1
0

=
3π

10
.

(b) Find the volume of the solid of revolution obtained by ro-
tating the region bounded by y = sec x, y = 1, x = −1 and
x = 1 about the x-axis.
The region has the horizontal line y = sec x as the top
boundary, the curve y = 1 as the bottom boundary, and the
lines x = −1 and x = 1 as the vertical boundaries (sketch
the graph!). A cross-section is a washer with the inner
radius 1 and the outer radius sec x. The cross-sectional
area is A(x) = π(sec2 x − 1), and the volume of the solid
of revolution is

V =

∫ 1

−1

A(x)dx = π

∫ 1

−1

(sec2 x− 1)dx = 2π

∫ 1

0

(sec2 x− 1)dx

= 2π (tan x− x)|10 = 2π(tan 1− 1).

10. Find the length of the following curves:
(a) y = x3/2, 0 ≤ x ≤ 2.

L =

∫ 2

0

√
1 + (y′)2 dx =

∫ 2

0

√
1 + 9

4
x dx.

Using the substitution u = 1 + 9
4
x, we get

L =
4

9

∫ 11/2

1

√
u du

=
4

9
· 2

3
u3/2

∣∣11/2

1
=

8

27

((
11

2

)3/2

− 1

)
.
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(b)

y =
x2

4
− ln x

2
, 1 ≤ x ≤ 2

L = L =

∫ 2

1

√
1 + (y′)2 dx =

∫ 2

1

√
1 +

1

4

(
x− 1

x

)2

dx.

We have, by simple algebra,

1 +
1

4

(
x− 1

x

)2

= 1 +
1

4
(x2 − 2 + x−2) =

1

4
(x2 + x−2) +

1

2

=
1

4
(x2 + 2 + x−2) =

1

4
(x + x−1)2.

Thus

L =

∫ 2

1

√
1

4
(x + x−1)2dx =

1

2

∫ 2

1

(x+x−1)dx =
1

2

(
x2

2
+ ln x

)∣∣∣∣2
1

=
3

4
+

ln 2

2
.

11. Find the average value fave of f on the given interval.
(a) f(x) = x sin(x2) on [0,

√
π].

We get, using the substitution u = x2, du = 2xdx,

fave =
1√
π

∫ √
π

0

x sin(x2)dx =
1

2
√

π

∫ π

0

sin u du

=
1

2
√

π
(− cos u)|π0 =

1

2
√

π
(− cos π + cos 0) =

1√
π

.

(b) f(x) = 4− x2 on [0, 3].

fave =
1

3

∫ 3

0

(4− x2) dx =
1

3

(
4x− x3

3

)∣∣∣∣3
0

=
1

3
(12− 9) = 1.

(c) For f as in part (b) find the number c in [0, 3] such that
f(c) = fave.
Solving 4−c2 = 1 we get c =

√
3 as the only solution which

belongs to the interval [0, 3].


