MAT 125-FINAL EXAM-FALL 2015

NAME:

TA NAME:

*Each numbered question is worth 20% of the exam.

1. Find the absolute minimum of $f(x) = xe^{-x}$ on the interval [-1, 1].

2) A rectangle has its base on the x axis and its upper two vertices on the the parabola $y = 12 - x^2$. What is the largest area the rectangle can have? 3) Determine the following limits or explain why they do not exist if $f(x) = \frac{\tan x}{x}$

$$a)\lim_{x\to 0}f(x)$$

 $b)\lim_{x\to-\infty}f(x)$

 $c)\lim_{x\to\frac{\pi}{2}^+}e^{f(x)}$

4) Graph the following on a scaled set of axes. Label all critical points and inflection points. (Exact values of any x intercepts NOT required.)

$$f(x) = x^4 - 4x^3 + 10$$

5) Graph the following on a scaled set of axes. Label all critical points and any asymptotes. (Inflection points are not required.)

$$y = \frac{(x+1)^2}{1+x^2}$$