MAT 125 Solutions to Midterm 2 (Fezzik)

1. For each of the functions f(x) given below, find f'(x)).

4 points

$$f(x) = \frac{1 + 2x^2}{1 + x^4}$$

(a)

Solution: This is a straightforward quotient rule problem:

$$f'(x) = \frac{(4x)(1+x^4) - (1+2x^2)(4x^3)}{(1+x^4)^2} = \frac{4x - 4x^3 - 4x^5}{(1+x^4)^2}$$

The simplification is not required.

(b) $f(x) = \sin(2x)\tan(x)$

Solution: Apply the product rule, with a chain rule for the sin(2x) term to get

 $f'(x) = 2\cos(2x)\tan(x) + \sin(2x)\sec^2(x).$

4 points

(c) $f(x) = \arctan\left(\sqrt{1+3x}\right)$

Solution: Applying the chain rule, we get

$$\frac{1}{1 + \left(\sqrt{1+3x}\right)^2} \cdot \frac{1}{2} \left(1+3x\right)^{-1/2} \cdot (3) = \frac{3}{2(2+3x)\sqrt{1+3x}}$$

2. Compute each of the following derivatives as indicated:

4 points

(a)
$$\frac{d}{du} \left[\frac{u^3}{4} + \frac{4}{u^3} \right]$$

(b) $d \begin{bmatrix} a^x & \pi^3 \end{bmatrix}$

Solution: Write this as $\frac{1}{4}u^3 + 4u^{-3}$ and apply the power rule to get

$$\frac{3}{4}u^2 - 12u^{-4}.$$

4 points

Solution: Remember that
$$\pi^3$$
 is a constant and so its derivative is zero. Thus, we have $\frac{d}{dx} \left[e^x - \pi^3 \right] = e^x$.

4 points

$$\frac{d}{dw} \left[\sqrt{1 + \sqrt{1 + w}} \right]$$
Solution: View this as $\frac{d}{dw} \left[\left(1 + (1 + w)^{1/2} \right)^{1/2} \right]$ and apply the chain rule:

$$\frac{1}{2} \left(1 + (1 + w)^{1/2} \right)^{-\frac{1}{2}} \cdot \frac{1}{2} (1 + w)^{-\frac{1}{2}} = \frac{1}{4\sqrt{1 + w}\sqrt{1 + \sqrt{1 + w}}}$$

12 points 3. The set of points (x, y) which satisfy the relationship

٦

$$y^2(y^2 - 9) = x^2(x^2 - 10)$$

lie on what is known as a "devil's curve", shown at right.

Write the equation of the line tangent to the given devil's curve at the point $(\sqrt{10}, 3)$.

Solution:

л Г

(c)

First, we use implicit differentiation to determine the slope of the tangent line. This will be slightly easier if we rewrite the equation as $y^4 - 9y^2 = x^4 - 10x^2$ first. Differentiating with respect to x gives

$$4y^3y' - 9 \cdot 2y \cdot y' = 4x^3 - 10 \cdot 2x$$
 and so $y' = \frac{x(2x^2 - 10)}{y(2y^2 - 9)}$.

At our desired point, $x = \sqrt{10}$ and y = 3, and so the slope is

$$y' = \frac{\sqrt{10} \cdot 10}{3 \cdot 9} = \frac{10\sqrt{10}}{27}.$$

This means the desired line is

$$y - 3 = \frac{10\sqrt{10}}{27}(x - \sqrt{10}).$$

4. Let
$$f(x) = x \ln(2x)$$

(a) Calculate $f'(x)$ **Solution:** Applying the product rule (and the chain rule) gives
 $f'(x) = \ln(2x) + x \frac{1}{2x} \cdot 2 = \ln(2x) + 1.$ **4** points(b) Calculate $f''(x)$ **Solution:** Taking the derivative of the above, we get $f''(x) = \frac{1}{x}$.**3** points(c) For what values of x is $f(x)$ increasing?**Solution:** As we all know, $f(x)$ is increasing when $f'(x) > 0$. Thus, using our
answer from part (a) tells us that we need to know when
 $\ln(2x) + 1 > 0$ or, equivalently, $\ln(2x) > -1$.**3** points(d) For what values of x is $f(x)$ concave down?**3** points(d) For what values of x is $f(x)$ concave down?**Solution:** We need to determine when $f''(x) < 0$. From part (b), this means
 $\frac{1}{x} < 0$ that is, $x < 0$.
However, remember that $\ln(3x)$ is only defined for $x > 0$. Thus $f(x)$ is concave up
for all values of x in its domain. There are no values of x where $f(x)$ is concave
down.**12** points5. Give the x and y coordinates of the (absolute) maximum and minimum values of the
function

 $y = x^4 - 8x^2 - 1$ where $-3 \le x \le 1$.

Solution: First, we locate the critical points. Since the function is a polynomial, f'(x) is defined everywhere, so we only need concern ourselves with the *x* for which f'(x) = 0.

Since
$$f'(x) = 4x^3 - 16x = 4x(x^2 - 4) = 4x(x - 2)(x + 2)$$
, we have the critical points
 $x = 0$ $x = 2$ $x = -2$

However, since we are concerned only with $-3 \le x \le 1$, we discard x = 2.

Now we evaluate f at each of the critical points, and the endpoints:

- f(0) = -1.
- f(-2) = 16 32 1 = -17.
- f(-3) = 81 72 1 = 8.
- f(1) = 1 8 1 = -8.

The largest value of the above occurs at x = -3, y = 8. This is our absolute maximum. The smallest occurs when x = -2 and y = -17, which is our absolute minimum.

12 points

6. Calvin's family is visiting a winery in Cutchogue, and he wanders off into the fermenting room and dives into one of the large cylindrical[†] wine vats. The vat has a diameter of 6 feet and is 8 feet tall. The vinter hears the splash and quickly opens the taps to drain the vat, which drains at a rate of 5 cubic feet per minute. How quickly is the height of wine in the tank dropping when the wine is 6 feet deep?

[†]The volume of a cylinder of height *h* and radius *r* is $\pi r^2 h$ and its surface area (excluding top and bottom) is $2\pi rh$. The density of the wine is about .98 kg/L or 61 pounds per cubic foot. 5 cubic feet is about 38 gallons or 142 liters. The wine is a rather sweet Riesling, but is probably less sweet after Calvin has been in it.

Solution: We have the formula for the volume of a cylinder $V = \pi r^2 h$. In our case, r = 3 since the diameter is 6, so we have $V = 9\pi h$ We want to know dh/dt.

Since the vat is draining at a rate of 5 cubic feet per minute, we have dV/dt = 5.

Using implicit differentiation, we get
$$\frac{dV}{dt} = 9\pi \frac{dh}{dt}$$
. So, we see that

$$\frac{5}{9\pi} = \frac{dh}{dt}$$

12 points 7. For each of the 4 functions graphed in the left column, find the corresponding derivative function among any of the 8 choices on the right (not just on the same row) and put its letter in the corresponding box. If the graph does not occur, use the letter **X**.

