SAMPLE MIDTERM 1 MAT 125 Spring 2004 Midterm 1 is 8:30-10:00pm, Monday, 2/23/04

109, (4) + 2109x + x10922 - 27	x	$\ln(x)$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	.69
Using the infomation in the table, estimate $\log_3 5$. (a) 1.16 (b) 1.26 (c) .68 (d) .86 (e) 1.46 (f) none of	'3	1.10
	4	1.39
these. $log_3 5 = ln5 = lob1 \approx lo46$.5	1.61

- (iv) Express the following function as an explicit formula: take a number and add 1 to it; then square the result and multiply by 4. (a) $f(x) = 4(x+1)^2$ (b) $f(x) = (4x+1)^2$ (c) $f(x) = 4x^2 + 1$ (d) $f(x) = (4x)^2 + 1$ (e) $f(x) = 4(x^2 + 1)$ (f) none of these.
- (v) The function $h(x) = x^2 + 1$ is a composition of the form h(x) = f(g(x)) where

 (a) $f(x) = x^2$ and g(x) = 1 (b) $f(x) = x^2$ and g(x) = x + 1 (c) f(x) = x + 1 and $g(x) = x^2$ (d) f(x) = x and $g(x) = x^2$ (e) $f(x) = (x + 1)^2$ and g(x) = -2x (f) none of these.

 FIRST SQUARE x (g(x)) THEN ADD 1 (f(x))
- (vi) Which of the following functions is not defined for all real numbers? (a) $y = \sin(x^2)$ (b) $\ln(1+x^2)$ (c) $y = e^{\cos(x)}$ (d) $y = \ln(\sin(x))$ (e) $y = \sqrt{\cos(x) + 2}$ (f) none of these. Since Sinx < O FOR Some x And Domain
- (vii) Simplify $\log_{10} 1000$. (a) 1 (b) 2 (c) 1/2 (d) 3 (e) 4 (f) none of these. $\times > 0$,
- (viii) Suppose f is graphed in the figure on the right. Let g(x) = 4 f(x+4). Where does g take its maximum value on $-4 \le x \le 4$.

 (a) x = -2 (b) x = -1 (c) x = 0 (d) x = 1 (e) x = 3
- (ix) What is the degree 5 coefficient of the polynomial $p(x) = x^2(x+1)(x+3x^3+4x^4)$ By 4

 (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) none of these.

 GET x^5 By $x^2 \cdot 1 \cdot 3x^3$ only

2. Sketch

(ii)
$$y = -x^2 + 4x + 4$$

(iii)
$$y = \sqrt{6-x}$$

3. Find each of the following limits (or say that it does not exist).

Find each of the following limits (or say that it does not exist). SINCE
$$\frac{1}{|x|} = \frac{1}{2} - \frac{1}{1} \text{ FOR } x > 0$$
(i) $\lim_{x\to 0} x/|x|$. DOES NOT EXIST SINCE $\frac{1}{|x|} = \frac{1}{2} - \frac{1}{1} \text{ FOR } x < 0$

(ii)
$$\lim_{x\to 0^+} \sqrt{x+4} = \sqrt{4} = 2$$

(iii)
$$\lim_{x\to 2} x^3 + x = 8+2 = 10$$

(ii)
$$\lim_{x\to 0^+} \sqrt{x} + 4 = 04$$

(iii) $\lim_{x\to 2} x^3 + x = 8 + 2 = 10$
(iv) $\lim_{x\to 2} (x^2 - 4)/(x - 2) = \lim_{x\to 2} (x+2)(x-2) = \lim_{x\to 2} (x+2) = 4$
(v) $\lim_{x\to 1} (x+1)/(x-1)$

domain of the function is the interval $0 \le x \le 8$.

(i) What is
$$f(-3)$$
? 4

(ii) What is
$$\lim_{x\to -1^+} f(x)$$
? -3

(iii) At what point is f continuous from the left but not $-6 - 5 - 4 - 3 - 2\sqrt{-1}$ continuous from the right? -3

(iv) Where is f discontinuous?

Find a formula for the piecewise linear function g graphed below by

5. finding the correct formula for each of its linear segments. Give the $\frac{1}{4} \frac{1}{3} \frac{1}{2} \frac{1}{11}$ intervals on which each formula is valid. X-2 FOR X>

6. Each of the following polynomials and rational functions is graphed below. Match the formulas to the correct graphs (shown on $-2 \le x \le 2$).

