MAT 125 Solutions to Second Midterm, Vers. 2

1. For each of the functions f(x) given below, find f'(x).

(a) 4 points
$$f(x) = x^5 + 5x^4 + 3x^2 + 9$$

Solution:

$$f'(x) = 5x^4 + 20x^3 + 6x$$

(b) 4 points
$$f(x) = x^4 e^x$$

Solution: This requires the product rule. Recall that the derivative of e^x is e^x .

$$f'(x) = 4x^3e^x + x^4e^x$$

(c) 4 points
$$f(x) = \frac{3x^2 + 2}{x^3 + 2\tan x}$$

Solution: Using the quotient rule,

$$\frac{6x(x^3 + 2\tan x) - (3x^2 + 2)(x^2 + 2\sec^2 x)}{(x^3 + 2\tan x)^2}$$

There is little point in trying to simplify this.

2. Compute each of the following derivatives as indicated:

(a) 4 points
$$\frac{d}{d\theta} \left[\cos \left(\frac{\pi}{180} \theta \right) \right]$$

Solution: This is just the derivative of the $\cos \theta$, when θ is in degrees. Using the chain rule, we get

$$-\frac{\pi}{180}\sin\left(\frac{\pi}{180}\,\theta\right)$$

(b) 4 points
$$\frac{d}{du} [\sin(3u)\sin(4u)]$$

Solution: Use the product rule to get

$$\left(\frac{d}{du}\sin(3u)\right)\sin(4u) + \sin(3u)\left(\frac{d}{du}\sin(4u)\right)$$

and then use the chain rule to get the answer, which is

$$3\cos(3u)\sin(4u) + 4\sin(3u)\cos(4u).$$

(c) 4 points $\frac{d}{dt} \left[\frac{t}{7} - \frac{7}{t} \right]$

Solution: If you rewrite this as $\frac{1}{7}t - 7t^{-1}$, it is clear the derivative is $\frac{1}{7} + 7t^{-2}$

3. 8 points Write a limit that represents the slope of the graph

$$y = \begin{cases} 6 + x \ln|x| & x \neq 0 \\ 6 & x = 0 \end{cases}$$

at x = 0. You do not need to evaluate the limit.

Solution: To do this, we need to remember the definition of the derivative, which is $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. In the current case, a=0, and notice that f(0)=6, so we have

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{(6 + h \ln|h|) - 6}{h}$$

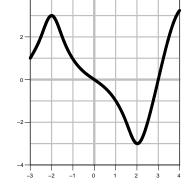
This simplifies to

$$\lim_{h\to 0}\frac{h\ln|h|}{h}=\lim_{h\to 0}\ln|h|=-\infty,$$

although it wasn't required for you to do this.

- 4. At right is the graph of **the derivative** f' of a function.
 - (a) 4 points List all values of x with $-3 \le x \le 4$ where f(x) has a local minimum.

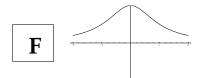
Solution: A local minimum for f(x) will occur where f'(x) changes from negative to positive. This happens at x=3.

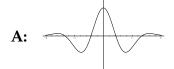


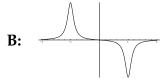
(b) 4 points At x = -1, is f(x) concave up, concave down, or neither?

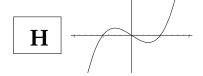
Solution: We know that a function is concave up when its second derivative is positive, and concave down when f'' is negative. The graph shows f'(x), which is decreasing near x = -1. That means the derivative of f'(x) is negative near x = -1, so f''(-1) < 0. Hence f(x) is concave down at x = -1.

5. 16 points For each of the 4 functions graphed in the left column, find the corresponding derivative function among any of the 8 choices on the right (not just on the same row) and put its letter in the corresponding box.

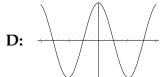


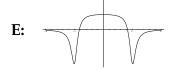


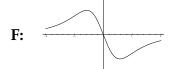


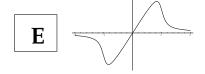


C: -









6. Let $f(x) = x e^{-2x}$.

(a) 3 points Calculate f'(x)

Solution: We use the product rule and the chain rule:

$$f'(x) = e^{-2x} - 2x e^{-2x}$$

(b) 3 points Calculate f''(x)?

Solution: Taking the derivative of the above gives

$$f''(x) = -2e^{-2x} - 2e^{-2x} + 4x e^{-2x}$$

which simplifies to

$$4xe^{-2x} - 4e^{-2x}$$

(c) 4 points For what values of x is f(x) increasing?

Solution: To answer this, we need to know when f'(x) > 0, that is, where

$$e^{-2x} - 2x e^{-2x} > 0$$

Factoring out the exponential term gives $e^{-2x}(1-2x) > 0$, and since e^{-2x} is always positive, we only need ask where 1-2>0. This happens for

$$x < \frac{1}{2}$$
.

(d) 4 points For what values of x is f(x) concave down?

Solution: We need to know when f''(x) < 0, so factor f''(x) as

$$4e^{-2x}(2x-1)$$
.

As before, we can ignore the exponential term, since it is always positive, and we see that f''(x) < 0 when x < 1/2.

7. 10 points Write the equation of the line tangent to the curve

$$y = 3x^4 - 5x + \sqrt{x}$$
 at $x = 1$

Solution: To write the equation of a line, we need a point and a slope. Since the line is tangent to the curve at x = 1, it contains the point (1, f(1)) = (1, -1).

To get the slope, we calculate f'(1). Taking the derivative gives

$$f'(x) = 12x^3 - 5 + \frac{1}{2}x^{-1/2},$$

so $f'(1) = 12 - 5 + \frac{1}{2} = \frac{15}{2}$. Hence the line is

$$y+1 = \frac{15}{2}(x-1)$$
, or, equivalently, $y = \frac{15}{2}x - \frac{17}{2}$

8. 10 points A ladder 14 feet long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall, and let ℓ be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does ℓ change with respect to θ when $\theta = \frac{\pi}{6}$?

Solution: Since the ladder forms a right triangle with the wall, we have $\ell=14\sin\theta$. The rate of change of ℓ with respect to θ is $\frac{d\ell}{d\theta}$, which is $14\cos\theta$. We want its value when $\theta=\frac{\pi}{6}$, so that is

$$14\cos\left(\frac{\pi}{6}\right) = 14 \cdot \frac{\sqrt{3}}{2} = 7\sqrt{3}$$

