Partial Review for Midterm Exam

Here are some problems you can use to help prepare yourself for the exam, which cover derivative-related questions not on the other practice problems. Note that this is not an exhaustive set of problems: just because something is here doesn't mean it will be on the exam, and there may be material on the exam not represented here. You should not need a calculator to do any of these problems.

The exam will be held on Wednesday, October 15, at 8:30 PM. Do not forget to bring your student ID card or another photo ID like a driver's license.

1. At right is a graph of a function $f(x)$. Draw a graph of the derivative $f^{\prime}(x)$.
At which x values is f increasing?
At which x values is f concave up?

Solution: The derivative is shown sketched on the same graph. Note that:

- f is differentiable everywhere, so f^{\prime} must be continuous.
- f is essentially flat for $x<-2.5$ and for $-1.5<x<-\frac{3}{4}$, so $f^{\prime}(x)$ is nearly zero there.
- for $-2.5<x<-1.5, f$ is increasing and so f^{\prime} is positive.
- Similarly, f^{\prime} is positive for $x>1$ because f is increasing there.
- For $-\frac{3}{4}<x<1, f(x)$ is decreasing, and so f^{\prime} is negative.
- $f(x)$ is concave up for $-2.5<x<-2$, so f^{\prime} is increasing there.
- There is an inflection point at $x=2$, giving f^{\prime} a local maximum. Its value is about $f^{\prime}(x)=2$, which can be estimated by noticing that f goes up 2 units for every 1 it moves right in that region.
- $f(x)$ is concave down (or flat) between $x=-2$ and $x=0$, so f^{\prime} is decreasing (actually, non-increasing) in that range.
- There is an inflection point at $x=0$ which gives f^{\prime} a local minimum there.
- Since $f(x)$ is concave up for $0<x<1.5, f^{\prime}(x)$ increases to a local maximum at $x=1.5$.
- $f(x)$ is concave down from about $x=1.5$ to $x=2$ or so, and so $f^{\prime}(x)$ decreases there.
- Finally, $f(x)$ is concave up for $x>2$, and so $f^{\prime}(x)$ continues to increase.

2. At right is a graph of the derivative $f^{\prime}(x)$ of a function.
Draw the graph of a function f which has the given graph as its derivative.
At which x values is f increasing?
At which x values is f concave up?

Solution: The graph of g is shown above in blue. Some comments follow.
First, we want to know where g is increasing. This corresponds to the values where $g^{\prime}(x)>0$, which we can see from the graph are (approximately)

$$
-2 \frac{1}{2}<x<\frac{1}{4} \quad \text { and } \quad x>2
$$

To determine where g is concave up, we look where $g^{\prime}(x)$ is increasing. This occurs for

$$
-2 \frac{1}{2}<x<-1 \quad \text { and } \quad x>1
$$

It wasn't asked, but you can also read off where $g(x)$ would have a local minimum or maximum from the graph of $g^{\prime}(x)$. A maximum will occur where $g(x)$ changes from increasing to decreasing, that is, where $g^{\prime}(x)$ goes from positive to negative values. This happens at about $x=1 / 4$. There will be a local minimum where $g^{\prime}(x)$ changes from negative to positive, that is at $x=2$. At $x=-2 \frac{1}{2}$, the function changes from flat to increasing, so you could argue that all points where $x<-2 \frac{1}{4}$ are a kind of minimum. It isn't strictly correct, but I could see how you might interpret it that way.

Using the above information, we can sketch the graph of $g(x)$, as follows.
Firstly, it doesn't matter what value we choose to start $g(-4)$ at; I chose 0 , but you might have chosen a different one. Since $g^{\prime}(x)=0$ until about $x=-2.5$, the graph of g doesn't change. Then there is a positive slope, and the graph increases more and more steeply. For $-1.25<x<-0.25$, we have $g^{\prime}(x)=2$. This means $g(x)$ is a straight line with slope 3 . Then the function increases less rapidly, until it reaches a local maximum at about $x=1 / 4$.

Then $g(x)$ decreases between $x=1 / 4$ and $x=2$, with an inflection point at $x=1$. For $x>2$, $g(x)$ increases, slowly at first, then more rapidly. The slope at $x=5$ is about 2.5.
3. Let $f(x)=x^{3}-3 x^{2}+2$.
a. Compute $f^{\prime}(x)$ and find the formula of the tangent line to the graph of $f(x)$ through the point $(1,0)$.

Solution: We can use the power rule to find the derivative: $f^{\prime}(x)=3 x^{2}-6 x$.
Now we want the graph of the tangent line at $(1,0)$, so we need the slope, which is

$$
f^{\prime}(1)=3-6=-3 .
$$

Thus, the tangent line is

$$
y-0=-3(x-1) \quad \text { or } \quad y=-3 x+1
$$

b. Compute $f^{\prime \prime}(2)$. Is $f(x)$ concave up or concave down at $x=2$? Justify your answer.

Solution: \quad Since $f^{\prime}(x)=3 x^{2}-6 x$, we have $f^{\prime \prime}(x)=6 x-6$. This means

$$
f^{\prime \prime}(2)=6(2)-6=12-6=6
$$

Since $f^{\prime \prime}(2)>0, f(x)$ is concave up at $x=2$.
4. The graphs of several functions $f(x)$ are shown below. On the same set of axes, sketch the function $f^{\prime}(x)$.

There isn't a lot to say here. The only slightly tricky bits are to notice that the third graph has a point where $f(x)$ is not differentiable, so $f^{\prime}(x)$ doesn't exist there (and has a discontinuity, going from negative to positive. The fourth graph is constantly decreasing, with a vertical tangent, meaning $f^{\prime}(x)<0$ and $f^{\prime}(x)$ has an asymptote there.
5. Which of the following represents $f^{\prime}(2)$ where $f(x)=e^{x^{2}}$.

$$
\lim _{x \rightarrow 2} \frac{e^{x^{2}}-e^{a^{2}}}{h} \quad \lim _{h \rightarrow 0} \frac{e^{4}\left(e^{4 h+h^{2}}-1\right)}{h} \quad \lim _{x \rightarrow 2} \frac{e^{x^{2}}-e^{2}}{x-2} \quad \lim _{h \rightarrow 0} \frac{e^{\left(x^{2}+h^{2}\right)}-e^{x^{2}}}{h}
$$

Solution: By the definition of the limit,

$$
\begin{aligned}
& f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{e^{(2+h)^{2}}-e^{4}}{h}=\lim _{h \rightarrow 0} \frac{e^{4+4 h+h^{2}}-e^{4}}{h}=\lim _{h \rightarrow 0} \frac{e^{4} e^{4 h+h^{2}}-e^{4}}{h} \\
&=\lim _{h \rightarrow 0} \frac{e^{4}\left(e^{4 h+h^{2}}-1\right)}{h}
\end{aligned}
$$

Each of the other choices has some problem with it.
6. In the paragraph below is a description of how the amount of water $W(t)$ in a tub varied with time.

The tub held about 50 gallons of green, brackish water, with some stuff floating in it that I didn't even want to guess about. I had to get it out of there. When I opened the drain the water drained out rapidly at first, but then it went slower and slower, until it stopped completely after about 5 minutes. The tub was about $1 / 4$-full of that nasty stuff. Would I have to stick my hand in it? Ick - there was no way I could do that. I just stared at it for a couple of minutes, but then I got an idea. I dumped in about 10 gallons of boiling water. That did something: there was this tremendous noise like BLUUUUURP, and then the tub drained steadily, emptying completely in just a minute or so.

Use this description to sketch a graph of $W(t)$ and its derivative $W^{\prime}(t)$. Pay careful attention to slope and concavity. Label the axes, with units.
Solution: A pair of graphs something like those below agrees with the description (the graph of $W(t)$ is on the left, its derivative on the right). The graph starts out at 50 , then decreases "slower and slower", (which is another way of saying it is decreasing and concave up) until it finally flattens out at about 5 minutes with a value of $12 \frac{1}{2}$. The "spike" at around 7 minutes corresponds to when the 10 gallons of boiling water were added, raising the amount to $22 \frac{1}{2}$, and then the level drops with constant slope, hitting the axis just about a minute later.

Of course, you might have minor variations. For example, the region around 7 minutes could be smooth, or discontinuous.

