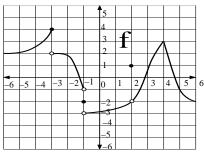
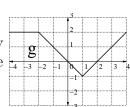
SAMPLE MIDTERM 1 MAT 125 Spring 2004 Midterm 1 is 8:30-10:00pm, Monday, 2/23/04

- 1. Place the letter corresponding to the correct answer in the box next to each question. Each question is worth 1 point.
 - Suppose f is a linear function such that f(1) = -1 and f(3) = 2. Then f(4) = ?(i) (a) $3^{\frac{1}{3}}$ (b) $3\frac{1}{3}$ (c) $3\frac{2}{3}$ (d) $3\frac{1}{2}$ (e) $3\frac{3}{4}$ (f) none of these.
 - Simplify $\log_2(4x^22^x)$ (a) $\ln 2 + 2\ln x + x$ (b) $\log_2 2 + 2\log_2 x + x$ (c) $\ln 4 + 2\ln x + 2\ln x$ (ii) $\overline{x \ln 2}$ (d) 2+2ln x + x (e) 2+2log₂ x + x (f) none of these.

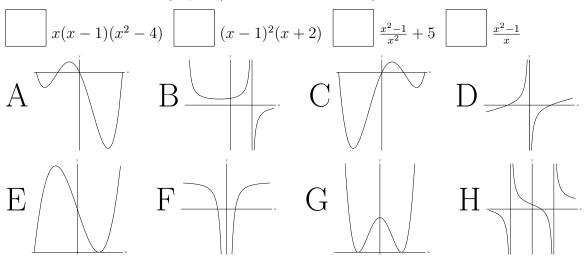
	x	$\ln(x)$
(a) 1.16 (b) 1.26 (c) .68 (d) .86 (e) 1.46 (f) none of	2	.69
	3	1.10
	4	1.39
these.	5	1.61


- (iv)Express the following function as an explicit formula: take a number and add 1 to it; then square the result and multiply by 4. (a) $f(x) = 4(x+1)^2$ (b) $f(x) = (4x+1)^2$ (c) $f(x) = 4x^2 + 1$ (d) $f(x) = (4x)^2 + 1$ (e) $f(x) = 4(x^2 + 1)$ (f) none of these.
- The function $h(x) = x^2 + 1$ is a composition of the form h(x) = f(g(x)) where (\mathbf{v}) **(a)** $f(x) = x^2$ and g(x) = 1 (b) $f(x) = x^2$ and g(x) = x + 1 (c) f(x) = x + 1 and $g(x) = x^2$ (d) f(x) = x and $g(x) = x^2$ (e) $f(x) = (x+1)^2$ and g(x) = -2x (f) none of these.
- (vi)Which of the following functions is not defined for all real numbers? (a) y = $\sin(x^2)$ (b) $\ln(1+x^2)$ (c) $y = e^{\cos(x)}$ (d) $y = \ln(\sin(x))$ (e) $y = \sqrt{\cos(x) + 2}$ (f) none of these.
- Simplify $\log_{10} 1000$. (a) 1 (b) 2 (c) 1/2 (d) 3 (e) 4 (f) none of these. (vii)
- Suppose f is graphed in the figure on the right.² (viii) $\overline{\text{Let } g(x)} = 4 - f(x+4)$. Where does g take its maximum value on $-4 \le x \le 4$. (a) x = -2 (b) x = -1 (c) x = 0 (d) x = 1 (e) $x = 3^{-1}$ (f) none of these.
- What is the degree 5 coefficient of the polynomial $p(x) = x^2(x+1)(x+3x^3+4x^4)$? (ix)(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) none of these.

2. Sketch


(i) $y = \frac{1}{3}x - 2$			
(ii) $y = -x^2 + 4x + 4$	•	• • • • • • • • •	•
(iii) $y = \sqrt{6-x}$			

3. Find each of the following limits (or say that it does not exist).


- (i) $\lim_{x\to 0} x/|x|$.
- (ii) $\lim_{x \to 0^+} \sqrt{x+4}$
- (iii) $\lim_{x\to 2} x^3 + x$
- (iv) $\lim_{x\to 2} (x^2 4)/(x 2)$
- (v) $\lim_{x\to 1} (x+1)/(x-1)$.
- 4. Answer the following questions based on the graph of the function f below. Assume the domain of the function is the interval $0 \le x \le 8$.
 - (i) What is f(-3)?
 - (ii) What is $\lim_{x\to -1^+} f(x)$?
 - (iii) At what point is f continuous from the left but not continuous from the right?

- (iv) Where is f discontinuous?
- Find a formula for the piecewise linear function g graphed below by g. 5. finding the correct formula for each of its linear segments. Give the g intervals on which each formula is valid.

6. Each of the following polynomials and rational functions is graphed below. Match the formulas to the correct graphs (shown on $-2 \le x \le 2$).

