Name: KEY ID#: Rec: | ELC3 | Josh | MW 6:50p | R01 | Yoav | M 9:35a | R02 | Samir | Th 12:50p | R03 | Ari | Tu 2:20p | R04 | Yuan | Th 5:20p | |------|--------|----------|-----|--------|----------|-----|----------|-----------|-----|----------|----------|-----|------|----------| | R05 | Daniel | M 11:45a | R06 | Samir | Th 2:20p | R07 | Wenchuan | Th 5:20p | R08 | Amy | F 9:35a | R09 | Yuan | Th 2:20p | | R10 | Yoav | W 9:35a | R11 | Daniel | W 11:45a | R12 | Dezhen | F 11:45a | R13 | Xiaojun | M 5:20p | R15 | Amy | W 8:30a | | R16 | Ari | Th 2:20p | R17 | Daniel | M 5:20p | R19 | Dezhen | M 11:45a | R20 | Wenchuan | Tu 9:50a | | | | | problem | 1 | 2 | 3 | 4 | 5 | 6 | Total | |----------|----|----|----|----|----|----|-------| | possible | 16 | 16 | 20 | 16 | 16 | 16 | 100 | score | | | | | | | | Directions: There are 6 problems on six pages in this exam. Make sure that you have them all. Do all of your work in this exam booklet, and cross out any work that the grader should ignore. You may use the backs of pages, but indicate what is where if you expect someone to look at it. Books, calculators, extra papers, and discussions with friends are not permitted. Leave all answers in exact form (that is, do *not* approximate π , square roots, and so on.) 1. (16 points) Determine whether the following limits exist. If they do, find them. If the limit does not exist, distinguish between $+\infty$, $-\infty$, and no limiting behavior (DNE). Justify your answers. a. $$\lim_{x \to 4} \frac{x^2}{(x-4)^2} \ge \lim_{x \to 4} \frac{1}{(x-4)^2} = \boxed{\infty}$$ b. $$\lim_{x \to \infty} \frac{4x^5 - 7x^2 + 2}{5 + x^3 + 2x^5} = \lim_{x \to \infty} \frac{\frac{1}{x^5} \left(4x^5 - 7x^2 + 2 \right)}{\frac{1}{x^5} \left(5 + x^3 + 2x^5 \right)} = \lim_{x \to \infty} \frac{4x^5 - 7x^2 + 2}{\frac{1}{x^5} + \frac{2}{x^5} + \frac{2}{x^5} + \frac{2}{x^5}}$$ $$=\frac{4}{2}=\boxed{2}$$ c. $$\lim_{h\to 0} \sin\left(\frac{\pi}{3} + h\right) = \sin\left(\lim_{h\to 0} \frac{\pi}{3} + h\right)$$ since \sin is continuous $= \sin\left(\frac{\pi}{3}\right) = \boxed{\frac{\sqrt{3}}{2}}$ d. $$\lim_{h \to 0} \frac{\sin\left(\frac{\pi}{3} + h\right) - \frac{\sqrt{3}}{2}}{h} = f'(\frac{\pi}{3}) \quad \text{where} \quad f(x) = \sin x$$ $$= \cos\left(\frac{\pi}{3}\right)$$ 2.(16 points) A raindrop falls vertically from the clouds on a calm, drizzly day. During the time it takes for the raindrop to fall from the clouds to the ground, the altitude (vertical position) of the raindrop, measured in feet above sea level, is well approximated by $$z(t) = 2000 - 16t - 8e^{-2t}$$ where t is measured in seconds. a. Find the velocity v(t) of the raindrop. SINCE VELOCITY IS THE DERIVATIVE OF POSITION, $V(t) = \Xi'(t) = -16 + 16c^{-2t}$ $$v(t) = 16(1-e^{-2t})$$ ft/sec b. Find the acceleration a(t) of the raindrop. SINCE ACCELERATION IS THE RATE OF CHANGE OF VE C(t) = V'(t) C(t) = V'(t) $$\underline{a(t)} = 32 e^{-2t}$$ ft/sec² 3.(20 points) Compute each of the derivatives: a. $$\frac{d}{dx} \left[x^5 - 4x^2 + 7 \right] = \left[5 \times 4 - 8 \times \right]$$ b. $$\frac{d}{d\theta} \left[\cos \left(\frac{\pi}{180} \theta \right) \right] = \left[-\sin \left(\frac{\pi}{180} \theta \right) \cdot \frac{\pi}{180} \right]$$ c. $$\frac{d}{dx} \left[4(\arctan x)^2 \right] = \left(8 \operatorname{arctan} \times \right) \cdot \frac{d}{dx} \arctan x$$ $$= \left[8 \operatorname{arctan} \times \cdot \frac{1}{1 + x^2} \right]$$ d. $$\frac{d}{du} \left[\frac{\sin u}{u^2} \right] = \frac{u^2 \cos u - 2u \sin u}{(u^2)^2}$$ $$= \frac{u \cos u - 2 \sin u}{u^3}$$ e. $$\frac{d}{dx} \left[\ln(\cos x) \right] = \frac{1}{\cos x} \frac{d}{dx} \cos x$$ $$= \frac{-\sin x}{\cos x}$$ **4.** (16 points) Let $f(x) = x e^{-2x}$. You may find it useful (or not) to recall that for any z, $e^z > 0$, or that we use the letter e in honor of Leonhard Euler (1707–1783). **a.** Compute f'(x). $$f'(x) = 1e^{-2x} + x(-2e^{-2x})$$ = $(1-2x)e^{-2x}$ **b.** Compute f''(x). $$f''(x) = -2e^{-2x} + (1-2x)(-2e^{-2x})$$ $$= 4(x-1)e^{-2x}$$ c. For what x values is f(x) increasing? $$f'(x) > 0 \iff 1-2x > 0$$ $\iff x < \frac{1}{2}$ $(-\infty, \frac{1}{2})$ **d.** For what x values is f(x) concave up? $$f''(x) > 0 \iff 4(x-1) > 0$$ $$\iff x > 1$$ $$(1, \infty)$$ 5. (16 points) Let $\mathcal C$ be the curve which consists of the set of points for which $$x^4 + x^2 + y^4 = 18$$ (see the graph at right). Write the equation of the line tangent to C which passes through the point (1, -2). $$\frac{d}{dx}(x^4+x^2+y^4)=\frac{d}{dx}18$$ $$4x^3 + 2x + 4y^3y' = 0$$ $$4(1)^3 + 2(1) + 4(-2)^3 y' = 0$$ $y' = \frac{3}{16}$ The line has slope $\frac{3}{16}$ and passes through (1,-2): $$y - (-2) = \frac{3}{16} (x-1)$$ $$y = \frac{3}{16} (x-1) - 2$$ **6.**(16 points) For each of the 4 functions graphed in the left column, find the corresponding derivative function among any of the 8 choices on the right (not just on the same row) and put its letter in the corresponding box.