1.(10 points) A function T(z) is given by the following table:

z	0	1	2	3	4
T(z)	5	7	3	-1	-4

a. Write the equation of the line that passes through the points on the graph of T(z) with z = 1 and z = 3.

Solution: The slope of the line $m = \frac{T(3)-T(1)}{3-1} = -4$. Applying the point slope formula to the point (1, T(1)) yields:

$$y - 7 = -4(z - 1).$$

b. If T is continuous function for $0 \le z \le 4$, why can we conclude that T(z) = 0 for some value of z between 2 and 3?

Solution: Note that T(2) > 0 and T(3) < 0. Since T is continuous it does not skip values (I.V.T). That is, T(z) can not skip zero when it passes from the being negative to positive.

2.(15 points) A window has the shape of a half-circle on top of a square. Denote the radius of the circle by r. See the figure at right.

a. Express the perimeter P of the window as a function of r.

Solution: The perimeter of the square part is 2r + 2r + 2r while the semi-circle contributes $\frac{1}{2}2\pi r$. So

$$P = r(6 + \pi).$$

b. Express the area A of the window as a function of r.

Solution: The area of the semi-circle is $\frac{1}{2}\pi r^2$, while the square yields $(2r)^2$. Hence

$$A = r^2(\pi/2 + 4).$$

c. Express the area A of the window as a function of its perimeter P.

Solution: From [a] we see that $r = \frac{P}{6+\pi}$. Substituting this equation into [b] yields

$$A = r^{2}(\pi/2 + 4) = \left(\frac{P}{6+\pi}\right)^{2}(\pi/2 + 4).$$

3.(9 points) The graphs of several functions f(x) are shown below. On the same set of axes, sketch the function g(x) as indicated.

- (1) erase the left half plane part of the graph (x < 0) and reflect the right half to the left (over the y-axis). It is the even function constructed by only using non-negative values of x.
- (2) Stretch horizontally by two and reflect over the x-axis.
- (3) Reflect over the line y = x.

4.(20 points) Let f(x) be the function whose graph is shown below.

a. List all points $-1 \le x \le 5$ where f(x) is not continuous. If there are none, write "none".

Solution: x = 1, 2, 4 (breaks or holes in the graph).

b. What is f(2)? If it is not defined, write DNE. Solution: f(2) = 1 (we use the closed dot). **c.** What is $\lim_{x\to 2} f(x)$? If it is not defined, write DNE.

Solution: The limit DNE because the left and right hand limits are not equal.

- **d.** What is $\lim_{x \to 1^{-}} f(x)$? If it is not defined, write DNE. Solution: Both the right and left hand limits are 1.
- e. What is $\lim_{x\to 2} \frac{f(x-1)}{f(x+1)}$? If it is not defined, write DNE.

Solution: $\lim_{x\to 2} f(x-1) = 1$ and $\lim_{x\to 2} f(x+1) = 2$. Dividing the two limits (the bottom limit is not zero) gives 1/2.

5.(20 points) Compute each of the limits below. If the limit does not exist, say so. Justify your answer in all cases.

a. $\lim_{x \to 1} 2 \ln(x)$

Solution:

$$\lim_{x \to 1} 2\ln(x) = 2\ln(1) = 0$$

(This is a continuous function, so just plug in 1).

b.
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$

Solution:
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 2)}{x - 3} = \lim_{x \to 3} \frac{(x + 2)}{1} = 5.$$

c.
$$\lim_{x \to 0^-} \frac{|x|}{x}$$

Solution:
$$\lim_{x \to 0^-} \frac{|x|}{x} = -1$$

For $x < 0$, $|x| = -x$. So $\frac{|x|}{x} = \frac{-x}{x} = -1$.
d.
$$\lim_{x \to 0} \frac{(x - 3)^2 - 9}{x}$$

Solution:
$$\lim_{x \to 0} \frac{x^2 - 6x + 9 - 9}{x} = \lim_{x \to 0} x - 6 = -6.$$

e.
$$\lim_{h \to 0^+} \tan(h) \sin\left(\frac{\pi}{h}\right)$$
 Hint: recall that $-1 \le \sin x \le 1$ for any x .
Solution: Use the squeeze theorem. Since $\lim_{h \to 0^+} \tan(h) = 0$ and $\sin\left(\frac{\pi}{h}\right)$ is the product tends towards zero.

bounded,

6.(15 points)

a. The values of the functions h and g are given by the table at right. What is the value of the function $g \circ h$ at 1?

x	g(x)	h(x)
0	1	2
1	0	1
2	2	0

Solution: Since
$$h(1) = 1$$
, $g(h(1)) = g(1) = 0$.

b. If $3^{x+2} = 7$, what is x?

Solution: Taking the ln of both sides, $(x + 2) \ln(3) = \ln(7)$. Thus $x + 2 = \frac{\ln(7)}{\ln(3)}$ which implies that

$$x = \frac{\ln(7)}{\ln(3)} - 2$$

c. What is the domain of the function $\ln(x^2 - 1)$?

Solution: We must have $x^2 - 1 > 0$ since the natural log only allows those values. Hence $x^2 > 1$ which implies that x > 1, or x < -1.

d. If $\sin(x) = 1/3$ and $\tan(x) < 0$, what is $\cos(x)$?

Solution: Since $\tan(x) < 0$ and $\sin(x) > 0$ we must have $\cos(x) < 0$ (Why?). Using the equation $(\sin(x))^2 + (\cos(x))^2 = 1$ we obtain, $\cos(x) = \pm \sqrt{1 - (\sin(x))^2}$. But since $\cos(x) < 0$ we must take the negative sign. Thus

$$\cos(x) = -\sqrt{1 - (1/3)^2} = \frac{2\sqrt{2}}{3}.$$

e. If the graph of $y = e^{kt}$ passes through the point (5, 1), what is k?

Solution: We have that $1 = e^{k \cdot 5}$ which implies that k = 0.

7.(11 points) Let $g(x) = \frac{5 - 5e^x}{5 + 5e^x}$.

a. Write a formula for $g^{-1}(x)$.

Solution: Note that the "Fives" all cancel out, so

$$g(x) = \frac{1 - e^x}{1 + e^x}$$

Interchanging the x - y variables we obtain:

$$x = \frac{1 - e^y}{1 + e^y}.$$

Now we solve for x. Cross multiplying gives

$$x + xe^y = 1 - e^y.$$

Next factoring gives

$$e^y(x+1) = 1 - x.$$

Hence

$$e^y = \frac{1-x}{1+x}$$

and

$$y = \ln\left(\frac{1-x}{1+x}\right).$$

b. What is the domain of $g^{-1}(x)$?

Solution: We must have $\frac{1-x}{1+x} > 0$. The rational function $\frac{1-x}{1+x}$ can only change sign at x = 1 or x = -1 (Why?). Simply plugging in and testing three test points: -5 < -1, 5 > 1, -1 < 0 < 1, we see that $\frac{1-x}{1+x} > 0$ only when -1 < x < 1.

¹Since this is what is being plugged into the natural log.