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Recall that we constructed our sets of numbers as  NZQRC

N is a (commutative) semigroup, which is a set of numbers that are commutative and 

associative, meaning that we have a set N and an operation (+) so that the following is true for 

any a, b, c € N:  a + b € N (closure);  a + b = b + a (commutativity);   and  a + (b + c) = (a + b) + c 

(associativity).    Note that N is both an additive semigroup and a multiplicative one.

A monoid is a set M with binary operation *: M x M  M, with the following axioms:

 - associativity : for all a, b, c in M, (a*b)*c = a*(b*c)

 - identity element: there exists an element e in M, such that for all a in M, a*e =e*a = a

 - closure: for all a, b in M, a*b is in M.

That is, it is a semigroup with an identity.  N is a multiplicative monoid (the identity is 1).   The whole 

numbers (N  {0})  form a commutative monoid (with + as the operation).

Z, is an additive group , which is a monoid with the additional property of inverses, i.e.  for all a 

in a set S, there exists a-1 so that a-1*a = a*a-1 =e.  Note that it is not possible to make Z into a 

multiplicative group.    However,  Z is a ring: it is an additive group and  a multiplicative monoid, 

together with distributive laws for combining the two operations.

Q forms a  field, which is a ring in which every nonzero member has a multiplicative inverse. 

For example, R and C are fields, but Z is not (since ½ is not an element of Z).

Now we turn to polynomials in, which we form by extending a field by an element x.

By a field extension, we let K be an arbitrary field, and use K[x] to be any finite sum of 

a product of an element of K with a nonnegative power of x.    We have seen such field 

extensions before; for example we saw that the complex numbers can be thought of as 



R[i]  = { a + bi | a, b real numbers}.  Here we only need the first power, since i2=-1.   Another 

example we mentioned was  Q[3a + b 3+ c 3a, b, c rational}.  Again, we only need 

consider  3and  3because (3)3=2, which is rational.

 

Coming back to our polynomials,  each polynomial has the form:

anxn + an-1xn-1 + an-2xn-2 + … + a2x2 + a1x + a0

with each coefficient ai being an element of K.

K[x] is a ring,  like Z.

Let’s compare these two rings - Z and K[x].

INTEGERS Z POLYNOMIALS K[x]
Addition and Subtraction

Example:  7-8 = -1

Addition and Subtraction

Example: (3x+5) – (x2) = -x2 + 3x +5
Multiplication

Example: 2*8 = 16

Multiplication

Example: (3x + 5)(2x2 + 1) = 6x3 + 10x2 + 3x + 5
Not always Division

Example:  6/2 = 3,  but 7/2 is NOT in Z

Not always Division

Example:  (x2 – 1)(x + 1) = x – 1,

(x2 – 1)/2x is not in Q[x]
Factor

Example:  18 = 3*3*2

Factor

Example:  (x2 – 1) = (x + 1)(x – 1)
Primes

Example: Irreducible integers 2, 3, 5, 7

Primes

Example:  Irreducible Polynomials 2x+4

Factoring

Z: To factor an integer x means we can write x as r*s, where r and s are both less than x. 

Therefore prime numbers can’t be factored, since the only divisors of p are 1 and p; that is,

p = 1*p by definition and p isn't less than itself.

K[x]: To factor a polynomial f(x) means we can write f(x) as h(x) * g(x), where the degree of h(x) 

is less than f(x) and the degree of g(x) is less than f(x).  Therefore a polynomial, 2x+4 can’t be 



reduced, since 2x+4 = 2(x+2) and the degree of 2 is 0 and the degree of x+2 is 1, which is not 

less than the degree of 2x+4, which is also 1.

The Euclidean Algorithm is a method in determining the greatest common factor of 2 numbers, 

a and b, using the following steps:

b = aq1 + r1

a = r1q2 + r2

r1 = r2q3 + r3

r2 = r3q4 + r4

.

.

.

rn-2 = rn-1qn + rn

rn-1 = rnqn+1 + 0

where ri represents remainders and qi represents the quotients.

The last non-zero remainder, rn is the greatest common factor of a and b, or as we write 

gcd(b,a) = d.

Since b = aq1 + r1, then by definition of divisibility the greatest common factor of a and b, d , 

divides b - aq1, and r1 = b - aq1.  Therefore, 

gcd(b,a) = gcd(a,r1) = gcd (r1, r2) = …. = gcd(rn-2, rn-1) = rn.

As an example, we can find the gcd of 1071 and 1029.

Note that     1071 = 1029 1  + 42.

Now              1029 = 42  24  + 21,

and                    42 =  21  2    + 0.

This tells us that  gcd(1071,1029) = 21.



We can use this method to find the greatest common factor of polynomials as well.

Find gcf (x5 – 17x + 2, x2 – 4x + 4).

The answer should be x-2, let’s use long division with polynomials and the Euclidean Algorithm 

to verify this.

(x5 – 17x + 2) = p(x) * (x2 – 4x + 4) + r(x)

What are p(x) and r(x)?   We can use long division of polynomials to find out.  Remember, this 

works just like long division of numbers, we just have to pay a little more attention.

                             

                            x  3   + 4x  2   +12x + 32  

    x2 – 4x + 4  )   x5                            – 17x + 2

                             x  5   – 4x  4   +4x  3  

                                     4x4-4x3   

                                     4x  4  -16x  3  +16x  2  

                                            12x3-16x2-17x                 

                                            12x  3  -48x  2  +48x     

                                                     32x2-  65x+    2

                                                     32x  2  -128x-128  

                                                                63x -126

So, we have determined that

                    x5 – 17x + 2 =  (x2 – 4x + 4) ( x3 + 4x2 +12x + 32)  +  (63x -126)

For the next step, we need to calculate gcd(  x2 – 4x + 4,   63x -126)

But  since 63x-126 = 63(x-2), we see that   x2 – 4x + 4 = (63x-126)(x-2)/63 + 0

Thus, the greatest common factor of   x5 – 17x + 2 and  x2 – 4x + 4 is  x-2, as we expected.

While the Euclidean algorithm seems to be more work than it is worth here (since we can just 

factor each part and look for common terms),  note that will still works when factoring is not so 

easy (or even not possible).  



For example, suppose we want the common factor of  x4 − 4x3 + 4 x2 − 3x + 14 and  x4 + 8x3 + 

12x2 + 17x + 6.

Dividing gives us 

    x4 + 8x3 + 12x2 + 17x + 6  = (x4 − 4x3 + 4 x2 − 3x + 14)*1   +  (  12x3 +8x2 +20x - 8)

We can rewrite the remainder as  12( x3 +2x2 /3 + 5x/3 -2/3)  to make the division a little easier 

(constant multiples don't matter), so we have

      x4 + 8x3 + 12x2 + 17x + 6 =  ( x3 +2x2/3 + 5x/3 -2/3)(x + 22/3) +  (x2 + x + 2)*(49/9)

and finally we have

       12x3 +8x2 +20x - 8 = ( x2 + x + 2)(12x - 4) + 0

Thus, the  greatest common factor is   x2 + x + 2, despite the fact that I didn't realize that  x2 + x 

+ 2 was a factor of either polynomial when we started.


